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Complex Networks
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• Network is a structure of N nodes and 2M  links (or M edges)

• Called also graph – in Mathematics

• Many examples of networks

Internet: nodes represent computers

links the connecting cables

Social network: nodes represent people

links their relations

Cellular network: nodes represent molecules

links their interactions

• Weighted networks each link has a weight determining the 
strength or cost of the link



                         Outline 
• Percolation – Graph Theory: Introduction 
• Degree Distribution, Critical Concentration, Distance, Optimal Distance 
• Complex Networks: Theory vs Experiment 
• Generalized Networks: Broad Degree Distribution – Scale Free: 

Anomalous physics, including percolation  
 
    Applications: 
• Efficient Immunization Strategy  
• Optimal path- Optimal transport 
• Optimize Network Robustness 
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Percolation and Immunization 
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   0.3p =  
     remove  
        or  
    immune 
 

Network exists 

Prob. that a site belongs 
to a spanning cluster 

P∞

cp p0

1

Network collapse 

  
   0.5p =  
     remove  
        or  
    immune 
 



Percolation Theory
 

Sites or bonds are randomly removed from a                  
lattice/graph with probability p . 

      Below threshold      Above threshold 
 • A phase transition exists at cp . 

• The correlation length scales like: 
νξ −−∝ cpp . 

 • The size of the spanning cluster near criticality behaves as: ( )cP p p β
∞ ∝ −  

 • The number of clusters of size s behaves at criticality as: ( )n s s τ−∝  
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Percolation – critical exponents

p – same role as T in thermal phase transitions
P∞ - probability that a site (or bond) belongs to ∞ cluster
order parameter                         - similar to magnetization( )cP p p β

∞ ∝ −

t
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- correlation length – mean distance between two
sites on the same cluster

The average size of finite clusters                            
(analogous to susceptibility)

and       are the same for p>pc and p<pc
For     and S take into account all finite clusters

and       called critical exponents describe critical behavior near the transition
The exponents are universal
Universality – property of second order phase transition (order parameter →0 continuously)

All magnets in d=3 have same       
independent on the lattice and type of interactions

Tc – depends on details (interactions, lattice) – same for pc

ξ

| |cp p νξ −∝ −

cS p p γ−−�

ν γ
ξ

,β ν γ ⇒

β

Prob. that a site belongs 
to a spanning cluster 

P∞

cp p0

1
( )β

∞ − c~P pp

Order parameter
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   Applications of Percolation 
 

 
•Oil recovery – Porous media 
 
•Gelation 
 
•Galaxy formation 
 
•Polymerization 
 
•Amorphous materials 
 
•Epidemics and Forest fires 



 

Random Graph Theory 
 
 
 

• Developed in the 1960’s by Erdos and Renyi. (Publications of the Mathematical 
Institute of the Hungarian Academy of Sciences, 1960). 

• Discusses the ensemble of graphs with N vertices and M edges (2M links). 
 

• Distribution of connectivity per vertex is Poissonian (exponential), 
where k  is the number of links : 

 

 P k e
c
k

c
k

( )
!

= −
,    c k

M
N

= =
2

 
       

• Distance   d=log N    --     SMALL WORLD 
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Known Results 
 
 
 
 
 
 
 
 
 

 
 

• Phase transition at average connectivity,             :  
 k < 1   No spanning cluster (giant component) of order logN 
  k > 1     A spanning cluster exists (unique) of order  N 

 k = 1   The largest cluster is of order  N 2 3/  
 

k = 1

• Size of the spanning cluster is determined by the self-consistent equation: 

 P e k P
∞

−= − ∞1  
 

• Behavior of the spanning cluster size near the transition is linear: 

 
β)( ppP c −∝∞ ,   1=β ,   where p  is the probability of deleting a site, 

 

1 1/cp k= −
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Percolation on a Cayley Tree 
 
 

• Contains no loops 
 

• Connectivity of each node is fixed  (  z   links) 
 

• Critical threshold: 

p
zc =

−
1

1  
 

• Behavior of the spanning cluster size near the transition is linear: 

 
β)( ppP c −∝∞ ,   1=β  

 
 
 
 
 
 
 
 
 
 

1,  =1/2, =5/2γ ν τ=

Exactly as for ER networks

Mean Field Exponents -- valid for 6cd d≥ = Upper critical dimension
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In  Real World - Many Networks are non-Poissonian 
  

 
             

 
 
 
 
 
 
       
 
 

 
P k e

k
k

k
k

( )
!

= −

   
( )

0
ck m k KP k

otherwise

λ− ≤ ≤= 


 
 

HeterogeneousHomogeneous



New Type of NetworksPercolation in complex Networks Professor Shlomo Havlin

Poisson distribution

Exponential Network

Power-law distribution

Scale-free Network



Networks in Physics
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ExamplesPercolation in complex Networks Professor Shlomo Havlin

· Internet, WWW (Faloutsos et. al., SIGCOMM ’99, Border et. al. IBM-Altavista research,Albert, Jeong and Barabasi,    
Nature 2000)     

· Protein Families (Delisi et al. PRL (2000), Unger et al, preprint)
· Metabolic cellular networks (Barabasi et. al., Nature 2000)
· Telephone & Power Networks
· Science collaboration networks (Newman, 2001, Barabasi et. al., 2001)
· Ecological Networks (Sole & Montoya, 2001)

P(k) P(k)

P(k)



Does Percolation Theory Valid?
Distribution Stability and Immunization

Critical concentration 30-70%

11cp
k

= − HOMOGENEOUS

HETEROGENOUS

NEW THEORY
IS NEEDED!

Infectious disease 
Malaria                     99%
Measles                  90-95%
Whooping cough   90-95%
Fifths disease         90-95%
Chicken pox           85-90%
Mumps 85-90%
Rubella 82-87%
Poliomyelitis          82-87%
Diphtheria 82-87%
Scarlet fever           82-87%
Smallpox 70-80%
INTERNET              99%

C ritic a l  
c o n c e n tra tio n  

Generalization of Erdös Theory:
Cohen, Erez, ben-Avraham, Havlin, PRL 85, 4626 (2000) 

Epidemiology Theory: Vespignani, Pastor-Satoral, 
PRL (2001), PRE (2001) 

Modelling: Albert, Jeong, Barabasi (Nature 2000) 
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Experimental Data: Virus survival 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Pastor-Satorras and Vespignani, Phys. Rev Lett. 86, 3200 (2001)) 
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Percolation Model I 
Random Breakdown (Immune) 

The Internet and many other  real networks are  scale-free network, where

Nodes are randomly removed (or immune) 
with probability  p  

         ( ) ,  2 3P k k λ λ−∝ ≤ ≤

Where does the phase transition occur ? 



Percolation Model II  
Intentional Attack (Immune) 
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The fraction, p , of nodes with the highest connectivity are removed (or immune). 

Is this fundamentally different from random breakdown? 

We find that not only critical thresholds but also critical exponents are different !

THE UNIVERSALITY CLASS DEPENDS ON THE WAY CRITICALITY REACHED



3 .3λ = 2.8

λ A critical threshold exist for every λ

Intentional Attack (Immune)

2.5

( )P p∞

- no critical threshold – a spanning cluster always exists3λ ≤
3λ > - a critical threshold exists

λ

λ

λ

Random Breakdown (Immune)
Results of Simulations and Theory
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Experimental Data: Internet Stability 
 
 
 
 
 
 
 
 
 
 
 
 
 
       

 
 

(Albert, Jeong and barabasi, Nature 406, 378 (2000)) 
 



THEORY FOR ANY DEGREE DISTRIBUTION 
Condition for the Existence of a Spanning Cluster 

 

If we start moving on the cluster from a single site, in order that
the cluster does not die out, we need that each site reached will
have, on average, at least 2 links (one “in” and one “out”). 
 

But, by Bayes rule:
 

P k i j
P i j k P k

P i ji
i i( )

( ) ( )
( )

↔ =
↔

↔  
 

   
 

 
Exponential graph: 

 
k
k

k k
k

2 2

2=
+

=  

 
⇒ =k 1 

 
Cayley Tree: 

 

p
zc =

−
1

1  

We know that P i j k
k

Ni
i( )↔ =
− 1   and P i j

k
N

( )↔ =
− 1  

 
 

Combining all this together:
   

κ ≡ =
k
k

2

2   
   (for every distribution) at the critical point. 

This means: 
  

k i j k P k i ji i i
ki

↔ = ↔ ≥∑ ( ) 2 ,  where   i j↔  means that site i  is 

connected to site    j . 
 

i

Cohen et al, PRL 85, 4626 (2000): PRL 86, 3862 (2001)
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Percolation for Random Breakdown 
If percolation is considered the connectivity distribution changes according 

to the law: 
'

( ) ( ) (1 )k k k

k k

k
P k P k p p

k
′−

′>

 ′= − 
 

∑  
 

Calculating the change in    κ    gives the percolation threshold: 

0

11 ,
1cp

κ
− =

−  where 
2
0

0
0

.
k

k
κ =   compared to 01 1/cp k= − < >  for Erdos Renyi 

For scale-free distribution with lower cutoff    m , and upper cutoff    K ,  gives 
13 3

1
0 2 2

2 , .
3

K m K N
K m

λ λ
λ

λ λ
λκ
λ

− −
−

− −

− − =  − − 
�

 

 
 

For scale-free graphs with  3λ ≤   the second moment diverges.  
No critical threshold!  

Network is stable (or not immuned) even for 1.p →  



Percolation for Intentional Attack (Immune)
 

Attack has two kinds of influence on the connectivity 
distribution: 
•  Change in the upper cutoff 

Can be calculated by ( )
K

k K
P k p

=

=∑ ,  

or approximately: 1/(1 )K mp λ−= . 
 
• Change in the connectivity of all other sites due to 

possibility of a broken link (which is different than 
in random breakdown). The probability of a link 
to be removed can be calculated by:  

0

1 ( )
K

k K
p kP k

k =

= ∑ , 

     or approximately: (2 )/(1 )p p λ λ− −= . 
 

Substituting this into: 
11

1cp
κ

− =
− , 

where 
3 3

2 2

2
3

K m
K m

λ λ

λ λ

ακ
α

− −

− −

− − =  − − 
, gives the critical threshold.  
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There exists a finite percolation threshold even for networks resilient to random error! 
 



Efficient Immunization Strategies:

Acquaintance Immunization
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Acquaintance Immunization
•Random immunization is inefficient 
in scale free graphs, while targeted 
immunization requires knowledge of 
the degrees.
• In Acquaintance Immunization one 
immunizes random neighbors of 
random individuals.
• One can also do the same based on 
n neighbors.
•The threshold is finite and no global 
knowledge is necessary.

( ) 2 /2( )( 1) / 1c

c

p kk
p

k
P k k k k v e−−− =∑

1 ( )
c

k
c p

k
f P k v= −∑

( )exp( / ) /p
k

v kP k p k k= −∑

Critical Threshold 
Scale Free

Cohen et al PRL (2003); cond-mat/0207387



Critical Threshold 
Scale Free General result:
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Efficient Immunization 
Strategies:

Acquaintance Immunization

2

0

2

0

22

0

2

1p 1
1

:

1p 1

c

c

k
critica lity

k

k
k

F or P oisson

k k k
k k

k

κ

κ

κ

= ↔

= −
−

≡

+
= =

= −

cp

Random

Acquaintance

Intentional

robust

vulnerable

Poor immunization

Efficient immunization

Cohen et al. Phys. Rev. Lett. 91 , 168701 (2003)



Critical Exponents
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Using the properties of power series (generating functions) near a singular point 
(Abelian methods), the behavior near the critical point can be studied.
(Diff. Eq. Melloy & Reed (1998) Gen. Func. Newman Callaway PRL(2000), PRE(2001))

For random breakdown the behavior near criticality in scale-free networks is different 
than for random graphs or from classical mean field percolation. For intentional attack-
same as classical mean-field.

P p pc∞ −~ ( ) β

1 2 3
3

1 3 4
3

1 4

λ
λ

β λ
λ

λ

 < < −
= < < −
 >

(classical mean field, 
for d>d, and ER)

Size of the infinite cluster:

n ss ~ − τ

2 3 4
2

2 .5 4

λ λ
λτ

λ

− < −= 
 ≥


(classical mean 
field, d>6 or ER)

Distribution of finite clusters at criticality:

Even for networks with                  , where        and      are finite, the critical exponents differ 
from the known mean-field result           . The order of the phase transition and the exponents 
are determined by         .

1=β
3 4λ< < k 2k

3k

(a)   Intentional attack same exponents as for ER, (b) Percolation clusters at criticality are fractals



Fractals
. 

Fractal geometry describes Nature better than classical geometry  
Two types of fractals: deterministic and random. 
 
Deterministic fractals and Random fractals 
 
Ideal fractals are self-similar.  
Every small part of the picture when magnified properly, is the same as the whole 
picture. 
 

Koch curve 

DLA
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Definition of fractal dimension ( ) ( )fdM bL b M L=  
generalization to non-integer dimension   fd  

Solution: ( ) fdM L AL=  

Example: Koch curve           

1 1 1 1 1 log 4( ) ( ) 1.262
3 4 3 3 4 log 3

f fd d

fM L M L M L or d     = = ⇒ = = ≈     
     

 

fd  - non integer – between 1 and 2 dimensions. Koch curve is not a line  
(d=1) but doesn’t fill a plane (d=2). 

Example: Sierpinski gasket               
1 1 1 1 1 log 3( ) ( ) 1.585
2 3 2 2 3 log 2

f fd d

fM L M L M L or d     = = ⇒ = = ≈     
     

 
Non integer dimension between 1 and 2 dimensions. 



Fractal Dimension at Critical 
Percolation
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/2 0.95

for 2
91,  1.896
48

,  1.68

, 

f

f

d
f

d

d dd

d

S R d

S d

N R R S N N

=

= =

≈

= =

l

l

�

� l

� �
6 2/3For 6,  ,  4,  2c fd d N R d d S N= = = = = → =l



Fractal Dimensions
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From the behavior of the critical exponents the fractal dimension of scale-free graphs  
can be deduced.

Random Graphs – Erdos Renyi(1960)

Largest cluster at criticality

2
1

2
3

4

4

f

f c

d
d dS R N N

S N

λ
λ λ

λ

−
− ≤

≥

� � �

�

2
3S N�

Scale Free networks

Far from the critical point - the dimension is infinite - the mass grows exponentially 
with the distance.

At criticality - the dimension is finite for  λ>3 .
2 4
3

2

λ λ
λ

λ

− < −

 ≥


Short path dimension:

dS l� l
22 4
3

4 4
fd

λ λ
λ

λ

− < −= 
 ≥
fdS R� 12 4

3

6 4
cd

λ λ
λ

λ

− < −= 
 ≥


Embedding dimension:

(upper critical dimension)

The dimensionality of the graphs at criticality depends on the distribution!

4

d =l

dN R=Fractal dimension:
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λ=2 λ=2.5 λ=5 λ=50
Rozenfeld et al PRL (2002), Manna et al (2002)



.
Problem: Optimal Distance 

lmin= 2(ACB)

lopt= 3(ADEB)

D

A

E

BC

2

35

4 1

.

. . .
= weight = price, quality,  time…..

Weak disorder (WD) – all contribute to the sum (narrow distribution)

Strong disorder (SD)– a single term dominates the sum (broad distribution)
THE PATH IN STRONG DISORDER=THE PATH ON A MINIMAL SPANNING TREE (MST)

SD – example: Broadcasting video over the Internet,

a transmission at constant high rate is needed.

The narrowest band width link in the path

between transmitter and receiver controls the rate.

minimal  optimal pathi
i

w = ⇒∑
iw

iw

Path from
A to B
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Scale Free (Barabasi-Albert) Random Graph (Erdos-Renyi)

Small World (Watts-Strogatz)

!
)(

k
kekP

k
k 〉〈

= 〉〈−

λ−= AkkP )(

Z = 4
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Shortest Paths in Scale Free Networks

( ) ~P k k λ−

loglog

. 2

log 3
loglog
log

2

3

3

d const

Nd
N

d N

d N

λ

λ

λ

λ

= =

= =

=

= <

>

<

(Bollobas, Riordan, 2002)

(Bollobas, 1985)
(Newman, 2001)

Same as for ER and WS

Ultra 
Small 
World 

Small World

Cohen, Havlin and ben-Avraham, in Handbook of Graphs and Networks 

eds. Bornholdt and Shuster (Willy-VCH, NY, 2002) Chap.4

Cohen, Havlin Phys. Rev. Lett. 90, 58701(2003)

Confirmed also by: Dorogovtsev, Mendes et al (2002), Chung and Lu (2002)
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Optimal path – weak disorder
Random Graphs and Watts Strogatz Networks

Nl log~min

Nlopt log~

pz
n 1

0 ∝ Typical short 

range neighborhood

Crossover from large

to small world

1/ 0 <nNFor

0/log~~ nN
opt eNl



Scale Free – Optimal Path – Weak disorder

55.2 K=λ
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)exp(~
loglog~

log~
32

min

min

llThus
Nl

Nl
For

opt

opt

<< λ

min

min

3
~ ( ) log

~ ( ) log
~

opt

opt

For
l A N

l B N
Thus l l

λ
λ

λ

>



Optimal Path – Strong Disorder-Minimal Spanning Trees (MST)
Random Graphs and Watts Strogatz Networks

CONSTANT SLOPE

0n - typical range of neighborhood 

without long range links

0n
N - typical number of nodes with 

long range links

3
1

~ Nlopt Analytically and Numerically

LARGE WORLD!!

Compared to the diameter or 
average shortest path or weak 
disorder

Nl log~min (small world)
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N – total number of nodes



Scale Free – Optimal Path










>

=

<<−−

4

4log

43

~
3

1

3
1

)1/()3(

λ

λ

λλλ

N

NN

N

lopt

Theoretically

+

Numerically

Numerically 32log~ 1 <<− λλ Nlopt

Strong Disorder-Minimal Spanning Trees

Weak Disorder
λallforNlopt log~

Diameter – shortest path









<<
=

>

32loglog
3loglog/log

3log
~min

λ
λ

λ

N
NN

N
l

LARGE WORLD!!

SMALL WORLD!!

4=λ
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Braunstein et al,   
Phys. Rev. Lett. 91, 247901 (2003);
Cond-mat/0305051
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Theoretical Approach – Strong Disorder
(i) Distribute random numbers 0<u<1 on the links of the network.

(ii) Strong disorder represented by )exp( ii au=ε .∞→a

(iii) The largest iu in each path between two nodes dominates the sum. 

(iv) The optimal path is the path with the min-max
(v) Percolation exists if we remove all links with 1i cu p> −

with 

(vi) The optimal path must therefore be on the 
percolation cluster at criticality.

A

B

What do we know about percolation clusters

at criticality in networks?



Fractal Dimensions
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From the behavior of the critical exponents the fractal dimension of scale-free graphs 
can be deduced.

Random Graphs – Erdos Renyi(1960)

Largest cluster at criticality

2
1

2
3

4

4

f

f c

d
d dS R N N

S N

λ
λ λ

λ

−
− ≤

≥

� � �

�

2
3S N�

Scale Free networks

Far from the critical point - the dimension is infinite - the mass grows exponentially 
with the distance.

At criticality - the dimension is finite for  λ>3 .
2 4
3

2 4
ld

λ λ
λ

λ

− < −= 
 ≥


Short path dimension:

dS l� l
22 4
3

4 4
fd

λ λ
λ

λ

− < −= 
 ≥


Fractal dimension:

fdS R� 12 4
3

6 4
cd

λ λ
λ

λ

− < −= 
 ≥


Embedding dimension:

(upper critical dimension)

The dimensionality of the graphs depends on the distribution!
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Theoretical Approach – Strong Disorder

(i) Percolation on random networks is like percolation

in or∞→d .cdd =
(ii) Since loops can be neglected the optimal path can 

be identified with the shortest path on percolation-only

a single path exist between any nodes.

A

B

Conclusions

Calculate the length of shortest path: 

Mass of infinite cluster fdRS ~ dRN ~

For ER 3/26/4/~ NNNS dd f ==
)2(,~ 2 =ldlS

3/12/1 ~~~ NSlloptfor ER, WS and SF with :4>λ
For SF with             43 << λ ,, fc dd and ld change due to novel topology: )1/()3(~ −− λλNlopt

,6=cd
where 

(also Erdos-Renyi, 1960)
From percolation 

Thus,



Optimal Networks
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Simultaneous waves of  targeted and random attacks
- Fraction of targeted

- Fraction of random  

2
2

≥
><
><

=
k
k

tp

rp

Bimodal: fraction of (1-r) having k    links 
and r having                                    links 

1
rrkk /)1(2 +−><=

SF

BimodalBimodal

SF

r = 0.001—0.15 from left to right

Optimal Bimodal : )/(2 rt ppr ≅

r=0.001

0.01

κCondition for connectivity:

P(k) changes:

kk
r

k
r

K

k
pp

k
k

kPkP −−







= ∑ 0

0

)1()()( 0
0

P(k) changes also due to targeted attack

rt pp /For ,1, <<rt pp is the only parameter

cf - critical threshold 



Optimal Bimodal

11 =kGiven: N=100,                       ,

and                                 

i.e, 10 “hubs” of degree 

using 

1.005.0/ =→= rpp rt

rrkk /)1(2 +−><=

Specific example:

1.2>=< k

122 =k
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Paul et al. Europhys. J. B 38, 
187 (2004), (cond-mat/0404331) 

Tanizawa et al. Optimization of 
Network Robustness to Waves of 
Targeted and Random Attacks
(Cond-mat/0406567, Phys. Rev. 
E (2005)



Conclusions and Applications
• Novel Condition for criticality

• Distance in scale free networks λ<3 : d~loglogN - ultra small world, λ>3 : d~logN.

• Optimal distance – strong disorder – Random Graphs and WS 

scale free

•Transition between weak and strong disorder  - in both percolation theory is important

•Scale Free networks (2<λ<3) are robust to random breakdown.

• Scale Free networks are vulnerable to attack on the highly connected nodes.

• Efficient immunization is possible without knowledge of topology, using Acquaintance 
Immunization.

• The critical exponents for scale-free directed and non-directed networks are different 
than those in exponential networks – different universality class!

•Large networks can have their topology optimized for maximum robustness to random 
breakdown and/or intentional attack.

3
1

~ Nlopt
3
1

1

~ 3

~ log 2 3
opt

opt

l N for

l N for

λ
λ

λ

λ

λ

−
−

−

> ⇒

< < ⇒{ Large World

Small World

Large World

2
0 0 02,  1 1/( 1),  /cp k kκ κ κ= = − − ≡< > < >

(Minimal spanning trees)
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Conclusions and Applications
•Generalized random graphs – Erdos-Renyi, λ<4 – novel 
topology.

• Scale free networks (2<λ<3) are robust to random breakdown.

• Scale free networks are vulnerable to intentional attack on the most highly 
connected nodes.

• Efficient immunization is possible without knowledge of topology, using 
Acquaintance Immunization.

• The critical exponents for scale-free (λ<4) directed and non-directed networks 
are different than those in exponential networks – different universality class!

• Moreover, the critical exponents depend on the strategy of node removal! THE 
UNIVERSALITY CLASS DEPENDS ON THE WAY CRITICALITY IS REACHED!

• Optimal path and minimal spanning trees on networks can be studied using 
percolation theory.

• Networks topology can be optimized for maximum robustness to various 
scenarios of failures such as  random breakdown and/or intentional attack-using 
percolation

( ) ,  4P k k λ λ− ≥�
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Size of the Spanning Cluster 
 

The spanning cluster size can be determined using either differential
equations (Molloy & Reed, Combinatorics, Probability & Statistics, (1998)), or by the 
generating function method (Callaway et. al., Phys. Rev. Lett. 85, 5624 (2000)) . 
 
Using those methods the spanning cluster size can be shown to be: 

))(1)(1(
0

∑
∞

=
∞ −−=

k

kukPpP , 
where u  is the smallest positive root of: 

u p p
kP k u

k

k

k
= + −

−

=

∞

∑( )
( )

1
1

0 . 
 

 
(Cohen et al., Phys. Rev. Lett. 86, 3682 (2001)) 
 



Generating Functions (Newman et al, PRE 64, 026118 (2001))
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Connectivity distribution:

Probability of reaching:

1
1 1 1 1

0

1( ) ( ( )) ( ) ( )k
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H x xG H x kP k H x
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∞
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=

= = ∑

0 0 1 1
0 0
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Infinite cluster size:

01 (1)P H∞ = −
With Percolation: (Callaway et al, PRL 85, 5468 (2000))
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Critical exponents – Derivation of β - Regular Graphs
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Critical exponents – Derivation of β
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Critical exponents – Derivation of τ
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Critical exponents – Derivation of σ
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Scaling relation in percolation theory:
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Percolation for Intentional Attack 
 

Attack has two kinds of influence on the connectivity distribution: 
  Change in the upper cutoff 

Can be calculated by pkP
K

Kk

=∑
=

)( ,  

or approximately: )1/(1 α−= mpK . 
 

 Change in the connectivity of all other sites due to possibility of a  
broken link (which is different than in random breakdown). 
The probability of a link to be removed can be calculated by: 

∑
=

=
K

Kk

kkP
k

p )(1

0
,  

or approximately: )1/()2( αα −−= pp . 
 

Substituting this into: 1
11
−

=−
κcp , 

Where αα

αα

α
ακ

−−

−−

−

−








−
−

=
22

33

3
2

mK

mK
, gives the critical threshold.  

 
 

There exists a finite percolation threshold even for networks resilient to random 
error! 
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The Model 

 
Intentional Attack 

 
The fraction, p , of nodes with the highest connectivity are removed.  

 
 

 
Is this fundamentally different from random breakdown? 
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THEORY 
Condition for the Existence of a Spanning Cluster 

If we start moving on the cluster from a single site, in order that the
cluster does not die out, we need that each site reached will have, on
average, at least 2 links (one “in” and one “out”). 
This means: 

k i j k P k i ji i i
ki

↔ = ↔ ≥∑ ( ) 2 , 

where i j↔  means that site i  is connected to  
site j . 
 
But, by Bayes rule: 

P k i j
P i j k P k

P i ji
i i( )

( ) ( )
( )

↔ =
↔

↔  
We know that 

P i j k
k

Ni
i( )↔ =
− 1  

and 

P i j
k

N
( )↔ =

− 1 . 
 
Combining all this together: 

κ ≡ =
k
k

2

2
(for every distribution)

 

at the critical point. 
 

  Exponential graph: 
 

  
k
k

k k
k

2 2

2=
+

=  

 

⇒ =k 1  
 

  Cayley Tree: 
 

p
zc =

−
1

1  
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Percolation for Random Breakdown 
 
If percolation is considered the connectivity distribution changes 
according to the law: 

P k P k
k
k p p

k k

k k k( ) ( ' )
'

( )
'

'=






 −

>

−∑ 1  
 
Calculating the change in κ  gives the percolation threshold: 

1
1

10
− =

−
pc κ , where κ 0

0
2

0

=
k

k . 

 
Plugging in the scale-free distribution with lower cutoff  m , and upper 
cutoff  K  , gives: 

κ
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α α

α α0

3 3

2 2

2
3

=
−
−







−
−

− −

− −

K m
K m , 1

1
−αN~K  . 

 
For scale-free graphs with α ≤ 3  the second moment diverges –  
No critical threshold! 
Network is stable even for p → 1 . 
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The Model 
 

Random Breakdown 
 

The Internet is believed to be a randomly connected scale-free network 
where 

P k k( ) ∝ −α
, α ≈ 2 5.  

 
Nodes are randomly removed with  
probability p . 
 
 
          
 
 
 
 
 
 
 
 
 
Where does a phase transition occur? 
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Intentional Attack

A critical threshold exist for every

Results of Simulations and Theory
Random Breakdown

- no critical threshold – a spanning cluster always exists3≤α
3>α - a critical threshold exists

α

α=2.5

2.8α=3.3

P
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C ritica l E x p o n en ts  
 
U sin g  th e  p ro p er tie s  o f  p o w er  ser ie s  n ea r  a  s in g u la r  p o in t 
(A b e lia n  m eth o d s), th e  b eh a v io r  n ea r  th e  cr it ica l p o in t  ca n  b e  
stu d ied . 
T h e  b eh a v io r  n ea r  cr it ica lity  in  sca le -free  n e tw o rk s is  d ifferen t 
th a n  fo r  ex p o n en tia l o n es! 
 
E v en  fo r  n e tw o rk s w ith  3 4< <α , in  w h ich  k  a n d  2k a re  f in ite , 
th e  cr it ica l exp o n en ts ch a n g e  fro m  th e  k n o w n  m ea n -fie ld  re su lt  

1=β . 
T h e  o rd er  o f th e  p h a se  tra n sit io n  a n d  th e  exp o n en ts  a re  
d e term in ed  b y  3k .  
 
S ize  o f  th e  in fin ite  c lu ster : 

P p p c∞ −~ ( ) β   













>

<<
−

<<
−

=

41

43
3

1

32
3

1

α

α
α

α
α

β
 

 
D istr ib u tio n  o f f in ite  c lu ster s  a t  cr it ica lity :  
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Fractal D im ensions 
 

From  the behavior of the critical exponents the fractal dim ension of 
scale-free graphs can be deduced. 
 
Far from the critical point - the dim ension is infinite - the mass grow s 
exponentially w ith the distance. 
A t criticality  - the dim ension is finite. 
 

C hem ical dimension:  
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The dimensionality  of the graphs depends on the distribution! 
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Behavior of the Site to Site Distance near Criticality
,log~ Nr kIn standard random graph models the average distance between sites scales as:

where  N is the system size.

That is, the mass behaves as: .~ rkM

atFrom infinite dimensional percolation theory it is known: Mr ~or,~ 2rM .cpp =

This is also true for scale-free networks with α .4≥

.)(~ 1−− cppA crossover exists between those behaviors where the correlation length: ξ

M

Communication becomes inefficient even before the breakdown



Conclusions and Applications  

• The Internet is resilient to random breakdown. 

• The Internet is sensitive to intentional attack on the most highly 
connected nodes. 

• Large networks can have their connectivity distribution 
optimized for maximum resilience to random breakdown and/or 
intentional attack. 

• A virus has a finite probability of infecting a large portion of the 
Internet, regardless of how low is the probability of infection. 

• However, if a finite fraction of the most highly connected routers 
of the Internet block the virus, it cannot infect a finite portion of 
the Internet. 

 
• Even before breakdown the diameter of the spanning cluster 

becomes large – making communication inefficient. 
 

• The critical exponents for scale-free networks are different than 
those in exponential networks – different universality class! 
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Small World
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A small world network is a regular lattice with added random links.

 
Examples: 

•  Movie actors 
•  Polymer chains configuration space 
•  Acquaintance networks 
•  Neural networks 
 
 

Exponents are the same as in mean-field percolation. 



Percolation in complex Networks Professor Shlomo Havlin

Results of Simulations and Theory



Percolation in complex Networks Professor Shlomo Havlin

Experimental Data: Virus survival 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Pastor-Satorras and Vespignani, Phys. Rev Lett. 86, 3200 (2001)) 
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Random GraphScale Free

Small World



Percolation and Immunization 
Percolation theory
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Network exists 

  
   0.3p =  
     remove  
        or  
    immune 
 

Prob. that a site belongs 
to a spanning cluster 

P∞

cp p0

1
( )β

∞ − c~P pp

Order parameter

Network collapse 

  
   0.5p =  
     remove  
        or  
    immune 
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Size of the Spanning Cluster 
 

The spanning cluster size can be determined using either differential
equations (Molloy & Reed, Combinatorics, Probability & Statistics, (1998)), or by the 
generating function method (Callaway et. al., Phys. Rev. Lett. 85, 5624 (2000)) . 
 
If After time t , tN links have been followed, the change in the number 

of unexposed nodes of connectivity k  is: 
dP k t

dt
kP k t

k t
( , ) ( , )

= −
− −2 1 . 

 
The number of open links in the cluster is: X t k t kP k t( ) ( , )= − − ∑2 . When 
 the entire cluster has been exposed. 
 
Solving this gives the cluster size: 

))(1)(1(
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∑
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=
∞ −−=

k

kukPpP , 
where u  is the smallest positive root of: 

u p p
kP k u

k

k

k
= + −

−

=

∞

∑( )
( )

1
1

0
 

 

(Cohen et al., Phys. Rev. Lett. 86, 3682 (2001)) 
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Efficient Immunization Strategies:

Acquaintance Immunization
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( ) 2 /2( )( 1) / 1c
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p kk
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k
P k k k k v e−−− =∑

1 ( )
c

k
c p

k
f P k v= −∑

( )exp( / ) /p
k

v kP k p k k= −∑

Acquaintance Immunization
•Random immunization is inefficient 
in scale free graphs, while targeted 
immunization requires knowledge of 
the degrees.
• In Acquaintance Immunization one 
immunizes random neighbors of 
random individuals.
• One can also do the same based on 
n neighbors.
•The threshold is finite and no global 
knowledge is necessary.

Critical Threshold 
Scale Free

Cohen et al cond-mat/0207387



• Random immunization is inefficient in scale 
free graphs, while targeted immunization requires      
knowledge of the degrees. 

 
• In Acquaintance Immunization one immunizes             

                        random neighbors of random individuals. 
 

cp

Results of Simulations and Theory

λλ
Efficient Immunization Strategy 
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