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Complex Networks

» Network 1s a structure of N nodes and 2M links (or M edges)
e Called also graph — in Mathematics
* Many examples of networks

Internet: nodes represent computers

links the connecting cables

Social network: nodes represent people =~ _i "l

«

links their relations R

Cellular network: nodes represent mole I [ »
links their interactions

* Weighted networks each link has a weight determining the
strength or cost of the link
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Outline

e Percolation — Graph Theory: Introduction

e Degree Distribution, Critical Concentration, Distance, Optimal Distance

e Complex Networks: Theory vs Experiment

e Generalized Networks: Broad Degree Distribution — Scale Free:
Anomalous physics, including percolation

Applications:

Efficient Immunization Strategy
Optimal path- Optimal transport
Optimize Network Robustness

References
Cohen et al Phys. Rev. Lett. 85, 4626 (2000); 86, 3682 (2001)
Rozenfeld et al Phys. Rev. Lett. 89, 218701 (2002)

Cohen and Havlin  Phys. Rev. Lett. 90, 58705 (2003)
Braunstein et al Phys. Rev. Lett. 91, 247901 (2003)

Cohen et al Phys. Rev. Lett. 90, 58705 (2003)



Percolation in complex Networks Professor Shlomo Havlin

Percolation and Immunization
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Sites or bonds are randomly removed from a
lattice/graph with probability 7.

"E“‘é“ﬁ*s % ﬁﬁ'}

{.- x ':'le._'nll-."'j;,{i_ el

Below threshold Above threshold

e A phase transition exists at P..

e The correlation length scales like: ¢ ‘P -p.|"

o The size of the spanning cluster near criticality behaves as: P, «(p, - p)’

® The number of clusters of size s behaves at criticality as: n(s)ocs™
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Percolation — critical exponents

v'p — same role as T in thermal phase transitions
v'P_ - probability that a site (or bond) belongs to oo cluster
order parameter P, oc (p — p,)’- similar to magnetization

v' & - correlation length — mean distance between two
sites on the same cluster

§OC|p_pc

B, Prob. that a site belongs

to a spanning cluster
|—V

: : _ P ~(p-p V)
v'The average size of finite clusters S [] ‘ p— Pc‘ 4 . ~(o-np,)

(analogous to susceptibility)
Order parameter

v' v and 7 are the same for p>p, and p<p, 0
v'For & and S take into account all finite clusters
v fB,v and 7 called critical exponents = describe critical behavior near the transition
v'The exponents are universal
v'Universality — property of second order phase transition (order parameter —0 continuously)
All magnets in d=3 have same S
independent on the lattice and type of interactions
v'T_— depends on details (interactions, lattice) — same for p,

P. »
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Applications of Percolation

¢Qil recovery — Porous media
oeGelation

eGalaxy formation
ePolymerization
eAmorphous materials

eEpidemics and Forest fires
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Random Graph Theory

e Developed in the 1960°s by Erdos and Renyi. (Publications of the Mathematical
Institute of the Hungarian Academy of Sciences, 1960).

e Discusses the ensemble of graphs with N vertices and M edges (2M links).

e Distribution of connectivity per vertex is Poissonian (exponential),
where £ is the number of links :

c 2M
P k m— _C_ = =
W =e%y, e=W="y

e Distance d=log N - SMALL WORLD
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Known Results

o Phase transition at average connectivity, (k) =1:
(k) <1 No spanning cluster (giant component) of order /ogN
(k)>1 A spanning cluster exists (unique) of order N
(k)=1 The largest cluster is of order N**

e Size of the spanning cluster is determined by the self-consistent equation:
P =1-¢ %

e Behavior of the spanning cluster size near the transition is linear:
B
P, o (p.—p) , B=1, where P is the probability of deleting a site,
p.=1-1/{k)

O ®

L
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Percolation on a Cayley Tree

o Contains no loops
o Connectivity of each node is fixed ( z links)

e Critical threshold:
1

z—1

P.=

e Behavior of the spanning cluster size near the transition is linear:

P, o (p.—p), p=1

y=1, v=1/2, t=5/2

Exactly as for ER networks

Mean Fleld EXpOIlCIltS - Valid fOI' d Z dc = 6 Upper Critical dimension
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In Real World - Many Networks are non-Poissonian

Exponential Scale-free
k)" i
P(k):e—<k> < > P(k) = ck m<k<K
k! 0 otherwise

Homogeneous Heterogeneous
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Poisson distribution Power-law distribution
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Networks in Physics

.
”:_}_\.

1‘,,\_(

e
{Lf

/.\ /.\ /.\ . .

.../..

/ N/ N\
\o/

o0
‘. ./
\

*
o
0\




Percolation in complex Networks Professor Shlomo Havlin




Percolation in complex Networks Examples Professor Shlomo Havlin

* Internet, WWW (Faloutsos et. al., SIGCOMM °99, Border et. al. IBM-Altavista research,Albert, Jeong and Barabasi,
Nature 2000)

+ Protein Families (Delisi et al. PRL (2000), Unger et al, preprint)

Metabolic cellular networks (Barabasi et. al., Nature 2000)

- Telephone & Power Networks

+ Science collaboration networks (Newman, 2001, Barabasi et. al., 2001)

Ecological Networks (Sole & Montoya, 2001)
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Does Percolation Theory Valid?

ey . . | I . . . 1
Stability and Immunization + _ _ _ __ _ _ _ __ o Distribution _ _ _ ,_ _ __
I I I
1 I I I .:;
p.=1- | HOMOGENEOUS | 2| e
<k | | o 1 O
r
Critical concentration 30-70% : : i : y
e e e e e e — e _ L o o o o m - - I  — __—C e — - ___ I — _ _
ritica I I I
Infectious disease concentration I I I
Malaria 99% : : :
Measles 90-95% | | . —
Whooping cough 90-95% : : f : ’pf
Fifths disease 90-95% I I ~ |3 l e
Chicken pox 85-90% : HETEROGENOUS : & 0.1 - : r
_90° i V'
guﬁﬁs S; 22 Oj" ' NEW THEORY 0.0l ' m
ubella "6 /70 IS NEEDED! 0.001¢ ,
Poliomyelitis 82-87% : : 0.0001 ,
Diphtheria 82-87% ' ' : TR 100'0 : €
|
Scarlet fever 82-87% : | b |
Smallpox 70-80% l l l
INTERNET 99% ! ! !

Generalization of Erd6s Theory:
Cohen, Erez, ben-Avraham, Havlin, PRL 85, 4626 (2000) Modelling: Albert, Jeong, Barabasi (Nature 2000)
Epide miology Theory: Vespignani, Pastor-Satoral,
PRL (2001), PRE (2001)
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Experimental Data: Virus survival

[i]
I.D E@ T T T T T T
i 2 boot
o file
= 14 months & macro
10" 1
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0 10 20 T 30
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FIG. 1. Surviving probability for viruses in the wild. The 814 different viruses analyzed have
been grouped in three main sirains [9]: file viruses infect a computer when running an infected
application; boot viruses also spread via infected applications, but copy themselves into the boot
sector of the hard-drive and are thus immune to a computer reboot; macro viruses infect data
files and are thus platform-independent. It is evident in the plot the presence of an exponential
decay, with characteristic time 7 ~ 14 months for macro and boot viruses and 7 =~ 7 months for

file viruses.

(Pastor-Satorras and Vespignani, Phys. Rev Lett. 86, 3200 (2001))

Professor Shlomo Havlin
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Percolation Model 1

Random Breakdown (Immune)

The Internet and many other real networks are scale-free network, where

P(k)oc k™, 2< 1 <3

Nodes are randomly removed (or immune)
with probability 7

Where does the phase transition occur ?
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Percolation Model I1

Intentional Attack (Immune)

The fraction, p, of nodes with the highest connectivity are removed (or immune).

Is this fundamentally different from random breakdown?

We find that not only critical thresholds but also critical exponents are different !

THE UNIVERSALITY CLASS DEPENDS ON THE WAY CRITICALITY REACHED



Results of Simulations and Theor

Random Breakdown (Immune)

T T 1 T I
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0.6 ] <, 0.61 N=10",10*10"
pc ‘Q:-\ | b H
0.4+ - fg 0.4} A=3.5 |
0.2 - 0.2+ |
0353 3 35 4 45 s O "7 “F/ Sanns
' . : 0 0.2 0.4 0.6 0.8 1
A p
A < 3 - no critical threshold — a spanning cluster always exists
A > 3 - acritical threshold exists
Intentional Attack (Immune)
0.08 ‘ : : : : 1
0.06
P,
0.04
0.02
0

At A critical threshold exist for every




Percolation in complex Networks Professor Shlomo Havlin

Experimental Data: Internet Stability
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(Albert, Jeong and barabasi, Nature 406, 378 (2000))
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THEORY FOR ANY DEGREE DISTRIBUTION
Condition for the Existence of a Spanning Cluster

Professor Shlomo Havlin

If we start moving on the cluster from a single site, in order that
the cluster does not die out, we need that each site reached will
have, on average, at least 2 links (one “in” and one “out”).

<> j)=2

i j)= 2 k Pk,

k;

This means: <ki , where i< j means that site # is

connected to site ;.

P(i > jlk,)P(k,)

Pkl 1) =
But, by Bayes rule: (k[ <> /) PG ) S—
. k, (k) (k) ke
We know that P(l<—>Jk,~)=N_1 and P(i<—>j)=ﬁ o k)
= (k)=1
< k2 > Cayley Tree:
Combining all this together: X = k)~ 2 L
© z-1
(for every distribution) at the critical point.

Cohen et al, PRL 85, 4626 (2000): PRL 86, 3862 (2001)
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Percolation for Random Breakdown

If percolation is considered the connectivity distribution changes according

_ kY L
to the law: P(k) = Z P(k’)Ekjpk k(l_P)k
k'>k

Calculating the change in K gives the percolation threshold:
! (k)

I=p.= x, 1 Where Ko RO compared to p.=1-1/<k;> for Erdos Renyi

For scale-free distribution with lower cutoff 777 , and upper cutoff K , gives
1

) —Z K?)—ﬂ _m3—/1 e
KO:(:}_leZﬂ._mZ/l’ K[ N4
For scale-free graphs with 4<3 the second moment diverges.

No critical threshold!
Network is stable (or not immuned) even for 2 —1.
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Percolation for Intentional Attack (Immune)

Attack has two kinds of influence on the connectivity
distribution:

e Change in the upper cutoff
K
Can be calculated by > P(h)=p,
k=K

or approximately: K =mp""™",

e Change in the connectivity of all other sites due to
possibility of a broken link (which is different than
in random breakdown). The probability of a link
to be removed can be calculated by:

1 K
D=——Y kP(k
P <k0>k§? (),

(2-2)/(1-2)

or approximately: p=p

— |
Substituting this into: -7, =——

k-1
B 7 _ K3
where « =( aj = —ZH , gives the critical threshold.

3—«

There exists a finite percolation threshold even for networks resilient to random error!
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Efficient Immunization Strategies:

Acquaintance Immunization

Critical Threshold
Scale Free
1—e- .
0.8F
0.6+
C
0.4F

Cohen et al PRL (2003); cond-mat/0207387

Random immunization is inefficient

in scale free graphs, while targeted

immunization requires knowledge of

the degrees.

* In Acquaintance Immunization one

immunizes random neighbors of

random individuals.

* One can also do the same based on
neighbors.

*The threshold is finite and no global

knowledge is necessary.

ZP(k)(k 1) k/ (k)| v, e =1
1= I—ZP(k)vpc
= kP(k)exp(—p/k)/{k)
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Critical Threshold
Scale Free General result:

()
(k)

= 2 <> criticality

fn )
1 T

L robust

O

0 8_ Poor immunization Random

0.6 =
k
Pe 1 )
J.4r- = For Poisson:
L Acquaintance & b 2
0.2“ o SE) (k) ()
:;f; . Z?lnerable. Inten;i_(;lz?—_ —hﬁh__'“g*-————______e_)ﬁ____ " <k> <k>
02 1C1en 1,mmumza§og | é | 3 5
A =T
Cohen et al. Phys. Rev. Lett. 91 , 168701 (2003) Efficient Immunization
Strategies:

Acquaintance Immunization
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Critical Exponents

Professor Shlomo Havlin

Using the properties of power series (generating functions) near a singular point

(Abelian methods), the behavior near the critical point can be studied.

(Diff. Eq. Melloy & Reed (1998) Gen. Func. Newman Callaway PRL(2000), PRE(2001))

For random breakdown the behavior near criticality in scale-free networks is different
than for random graphs or from classical mean field percolation. For intentional attack-

same as classical mean-field.

Even for networks with 3 < A < 4, where <k> and <k > are finite, the critical exponents differ
from the known mean-field result 5 =1. The order of the phase transition and the exponents

are determined by (%>
Size of the infinite cluster:

P.~(p-p.)’

Distribution of finite clusters at criticaiity:

-

2<A<3
3- 21
1
3<A<4
/1 _
1 A >4 (classical mean field,
for d>d, and ER)
24 S A<4
A-=-2
2
2.5 A2>4 (classical mean

field, d>6 or ER)

(a) Intentional attack same exponents as for ER, (b) Percolation clusters at criticality are fractals
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Fractals

Fractal geometry describes Nature better than classical geometry
Two types of fractals: deterministic and random.

Deterministic fractals and Random fractals

Ideal fractals are self-similar.
Every small part of the picture when magnified properly, is the same as the whole
picture.

= e

Koch curve
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Definition of fractal dimension M (bL)=b" M (L)
generalization to non-integer dimension ¢,
Solution: M(L) — ALY

Example: Koch curve il trd

df d/»
M(le:lM(L):(lj M(L):(lj Lo df:10g4z1.262
3 4 3 3 * log3

d - non integer — between 1 and 2 dimensions. Koch curve is not a line
(d=1) but doesn’t fill a plane (d=2).

Example: Sierpinski gasket

] ] N N

Non integer dimension between 1 and 2 dimensions.
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Fractal Dimension at Critical

Percolation

Professor Shlomo Havlin
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Fractal Dimensions

From the behavior of the critical exponents the fractal dimension of scale-free graphs
can be deduced.

Far from the critical point - the dimension is infinite - the mass grows exponentially
with the distance.

A>3 Random Graphs — Erdos Renyi(1960)

(12 p)
1123 <4 Largest cluster at criticality
Short path dimension: d, = ] ,
2 A=4 3
S[] gdz ‘ S N?3
2;1_? A4 Scale Free network
— ca works
Fractal dimension: d 2l N = R’
4 A>4 dy -2
d \ A2
SO RY o SORYON*ON* A<4
2/1—3 A<4 5
Embedding dimension: d =1 7 S N3 A1>4
(upper critical dimension) 6 A24

The dimensionality of the graphs at criticality depends on the distribution!
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Rozenfeld et al PRL (2002), Manna et al (2002)
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Problem: Optimal Distance

2
: Path from [.w=2(ACB)
4 I AtoB
l.= 3(ADEB)
A 5 .C 3 B

.= Weight = price, quality, time..... sz‘ — minimal = Optlmal path

[
Weak disorder (WD) —all . contribute to the sum (narrow distribution)

Strong disorder (SD)-— a single term dominates the sum (broad distribution)
THE PATH IN STRONG DISORDER=THE PATH ON A MINIMAL SPANNING TREE (MST)

SD — example: Broadcasting video over the Internet,
a transmission at constant high rate is needed.

The narrowest band width_link in the path

between transmitter and receiver controls the rate.



Scale Free (Barabasi-Albert) Random Graph (Erdos-Renyi)

(\/
N as)

LY

Small World (Watts-Strogatz)

P(k) = Ak™
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Shortest Paths in Scale Free Networks

P(k) ~ k™
d = const. A=2
Ultra
Small d — lOg IOgN 2 < ﬁ <3
World
d p— logN Z/ —— 3 (Bollobas, Riordan, 2002)
loglog N
smanworia  d =log N A>3 e
Same as for ER and WS

Cohen, Havlin and ben-Avraham, in Handbook of Graphs and Networks
eds. Bornholdt and Shuster (Willy-VCH, NY, 2002) Chap.4
Cohen, Havlin Phys. Rev. Lett. 90, 58701(2003)
Confirmed also by: Dorogovtsev, Mendes et al (2002), Chung and Lu (2002)
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Optimal path — weak disorder

Random Graphs and Watts Strogatz Networks

1.5 - . - :
lmianogN RN e
6| : s
~ . 9O f ] &
lopt IOgN = Ay - i
10 21 ‘ o+ -
2 . i@
1 1ypicat short - T s as 6T P
1ca
n, oC — r = ~In pz
pZ range neighborhood __& Pﬁ
0.5 r ﬁﬁﬁ .
Crossover from large
to small world : ] ﬁ
FOI'N/n0<1 00 Lanasd™® | .
-5 0 5 10
[y ~ N ~ o8N/ In N/n,
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Scale Free — Optimal Path — Weak disorder
. . , 20 : . : : :

Professor Shlomo Havlin

25 .
(@ 25 . . : | (b)
o 20| d A=5.0
20r 515} / 475 15 |
? ;-g FpET 450 1
15 | Y2 3 4 5 4.25
3 A 400 | = 10]
~° 3.50 =
10 1 3.00 -
/2.50 |
/ >
5 I e |
. ' ' ' ' %0 5 10 15
2 4 6 8 10 12
In N fmin
For A>3
For 2<A1<3
[~ A(1)log N | ~logN

[ ~B(A)logN
Thus

lopt = lmin

[ . ~loglog N

T h us lopt ~ eXp(lmin)

20
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Optimal Path — Strong Disorder-Minimal Spanning Trees (MST)

200

150

"Iu:pl.w

a0

/ N,

Professor Shlomo Havlin

Random Graphs and Watts Strogatz Networks

| (@)

r
- _r-_-'- d
a'n ¥
e

f
F

CONSTANT SLOPE

.4-;'-/-,--/_-l

,‘/a-"

7
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4] 10 20 a0
112
M
(B *

-.-.‘ “t ]

& s | :

P '
3 T .

s :} -

" “WErE a5 6 7

_hFE

a 2 & 2

N — total number of nodes

1
) opt ™ N % Analytically and Numerically

min

LARGE WORLD!!

Compared to the diameter or
average shortest path or weak
disorder

~ lOg N (small world)

n, - typical range of neighborhood

without long range links

E - typical number of nodes with

n
* long range links
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Scale Free — Optimal Path

B 1 Strong Disorder-Minimal Spanning Trees
80
@0 Theoretically (N0 3<A<4
3
o + I, ~{N"logN  1=4
. A
2 Numerically N7 A>4
0
0
LARGE WORLD!!

Numerically Loy ~ log' N 2<1<3
SMALL WORLD!!

Weak Disorder
" T l,,~logN for all A

In""'N

Diameter — shortest path

(log N A>3
Braunstein et al,
Phys. Rev. Lett. 91, 247901 (2003); lmin ~ 3 log N/ log log N A=3
Cond-mat/0305051 \ 1Og log N 2 < 1 <3
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Theoretical Approach — Strong Disorder

(1) Distribute random numbers 0<u<I on the links of the network.

(ii) Strong disorder represented by &, = exp(au.) With a — oo.

(111) The largest #; in each path between two nodes dominates the sum.
(1v) The optimal path 1s the path with the min-max

(v) Percolation exists 1if we remove all links with u, > ] — D.

(vi) The optimal path must therefore be on the
percolation cluster at criticality.

What do we know about percolation clusters

at criticality in networks?
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Fractal Dimensions

From the behavior of the critical exponents the fractal dimension of scale-free graphs

can be deduced.

Far from the critical point - the dimension is infinite - the mass grows exponentially

with the distance.

Short path dimension:

NIV

Fractal dimension:
d
SURY

Embedding dimension:

(upper critical dimension)

d, =4
;7
d, =1

-

A>3,
1-92 ; Random Graphs — Erdos Renyi(1960)
— <4
A-3 Largest cluster at criticality
2 Ax4 z
S N3
2272 44
A-3 Scale Free networks
| 4 A>4 ) d; i
(-1 SORYON*ON* A1<4
2—— A<4
A-3 2
S N3 A>4
6 A>4

The dimensionality of the graphs depends on the distribution!
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Percolation in complex Networks

Theoretical Approach — Strong Disorder
Conclusions

(1) Percolation on random networks is like percolation

ind >wor d=d,.

(11) Since loops can be neglected the optimal path can

be identified with the shortest path on percolation-only

a single path exist between any nodes.

Calculate the length of shortest path:

Mass of infinite cluster S ~ Rdf where N ~ R
dpld _ ar4l6 _ ar2/3 :
ForERd, =6,S~N"7 " =N"=N (also Erdos-Renyi, 1960)
From percolation S~ ’ , (d ;= 2)

Thus, for ER, WS and SF with 4 >4: lopt ]~ SV N3

ForSFwith 3<1<4 d_, df and d , change due to novel topology: Iopt ~ NN
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Optimal Networks

Simultaneous waves of targeted and random attacks

Bimodal: fraction of (1-r) having k; links p, - Fraction of targeted
and r having k, =(<k >-1+r)/r links

r = 0.001—0.15 from left to right P, - Fraction of random

2
: : o~ <k®>
Optimal Bimodal : 7 = 2(]7 t / P r) Condition for connectivity: x = P > 2
<K>

P(k) changes:

S k
P(k) = Zpo(k)[ . j(l -p,) pl
ko
P(k) changes also due to targeted attack
ForP;» P, << 1, p , / p, 1s the only parameter

fc - critical threshold
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Optimal Bimodal

Specific example:

Given: N=100, < k >=2.1, kl =

and pt/pr =0.05—>r=0.1

i.e, 10 “hubs” of degree k, =12

using Lk, =(<k>-1+r)/r

Paul et al. Europhys. J. B 38,
187 (2004), (cond-mat/0404331)

Tanizawa et al. Optimization of
Network Robustness to Waves of
Targeted and Random Attacks
(Cond-mat/0406567, Phys. Rev.
E (2005)
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Conclusions and Applications
e Novel Condition for criticality K, =2, p, =1-1/(x, —1), kK, =<k>>/<k>
* Distance in scale free networks A<3 : d~loglogN - ultra small world, A>3 : d~logN.

1
* Optimal distance — strong disorder — Random Graphs and WS /,,, ~ N /5 Large World

.. . A-3
(Minimal spanning trees) { lopt ~ N1 for A>3 —Large World
scalefree 7 ~log'N for 2<A<3 =Small World

*Transition between weak and strong disorder - in both percolation theory is important
*Scale Free networks (2<A<3) are robust to random breakdown.
* Scale Free networks are vulnerable to attack on the highly connected nodes.

e Efficient immunization is possible without knowledge of topology, using Acquaintance
Immunization.

* The critical exponents for scale-free directed and non-directed networks are different
than those in exponential networks — different universality class!

*Large networks can have their topology optimized for maximum robustness to random
breakdown and/or intentional attack.
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Conclusions and Applications

*Generalized random graphs P(k) 1 k= , A =4 — Erdos-Renyi, A<4 — novel
topology.

* Scale free networks (2<A<3) are robust to random breakdown.

* Scale free networks are vulnerable to intentional attack on the most highly
connected nodes.

* Efficient immunization is possible without knowledge of topology, using
Acquaintance Immunization.

* The critical exponents for scale-free (A<4) directed and non-directed networks
are different than those in exponential networks — different universality class!

* Moreover, the critical exponents depend on the strategy of node removal! THE
UNIVERSALITY CLASS DEPENDS ON THE WAY CRITICALITY IS REACHED!

* Optimal path and minimal spanning trees on networks can be studied using
percolation theory.

* Networks topology can be optimized for maximum robustness to various
scenarios of failures such as random breakdown and/or intentional attack-using
percolation
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Size of the Spanning Cluster

The spanning cluster size can be determined using either differential
equations (Molloy & Reed, Combinatorics, Probability & Statistics, (1998)), Or by the
generating function method (Callaway et. al., Phys. Rev. Lett. 85, 5624 (2000)) .

Using those methods the spanning cluster size can be shown to be:
P, =(1-p)1-) P(ku*)
k=0

where v is the smallest positive root of:

0 kP k k-1
u=p+(1—p);%

(Cohen et al., Phys. Rev. Lett. 86, 3682 (2001))
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Generating Functions  (Newman et al, PRE 64, 026118 (2001))

Connectivity distribution: G, (x) = i P(k)x"*
k=0

Go_'(x) _ 1

Probability of reaching: G (x)= — N kP(k)x"!
O s
Branch size: H,(x)=xG,(H,(x)) = %Z kP(k)H, (x)*
k:

SRN A

Cluster size: H (x) = Zpsxs =G,(H,(x))= ZP(/{)H1 (x)"
s=0 k=0
Infinite cluster size: POO =1—-H 0 (1)

(Callaway et al, PRL 85, 5468 (2000))

O W T B S AT
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Critical exponents — Derivation of /- Regular Graphs
P, oxc(9-q.)
Cayley Tree:

—g[ 1= P(k)ut g=1-p
q( k=0 j P (q)= q(l—uz)

P, ~q.(k)e~(g-q.)"
u=1-¢ qg=q, +0

o g+ 2Ly
1—5:1—qc—5+qc+52kp(k)(1—g)k—‘ ’ e
<k> k=0 q +0 1

. l-¢=1-q, - (1-¢)°
> kP(kyu*" = (k) (k(k-1))e+
h 1<k(k D(k-2))é E 2 o

— - —2))e" +... ~

2 z—2
 2(k(k-1)) B

(k(k—1)(k-2)) = F=1 = =1



Percolation in complex Networks

Professor Shlomo Havlin

Critical exponents — Derivation of

P, oc(qg—q,)

l—e=1-q —-5+2 i kP(k)(1-g)*!

{k >
q, = <k>/<k(k — 1)>
Using Abelian methods:

S kPG 1) (k) = (k(k = 1)) +

P(k) ~k™°

%(k(k “D(k-2))e’ +...+cT(2—a)e*

1

(@%_quiﬁ%3<a<%
cI'2-a)

2{k(k-1))
(k(k—1)(k-2))

; 3<a<4
b=a-3

l >4
For 2 <a < 3:
q.=0

ikP(k) u" " ~ (k) + T (2-a)e*™

1

cF(2-a) | &
E=|— 03¢
S
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*
-7 _—s/s

n,~s e

1-7

p,=sn, =s

H,(x) = Z pX

Professor Shlomo Havlin

Critical exponents — Derivation of 7

Tauberian theorems:

p~¢ = p, ~g5 Y

p=q.+ -1~ L
q.

+ (k(k =Dk =2)) .. +...+c—r(2_a)

a-2
Ho(x)zl—q—i—qxiP(k)Hl(x)k 2<k> <k> ’
= T=24+y
H(x)=1-qg+ qxi kP(k)H, (x)"! 5
k=0 125, a >4
x=l-¢ gq=gq,
d(e)=1-H (-¢) re2r L 22073 5 hcy

a—2 o-2
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Critical exponents — Derivation of o

n(s)~s"e™" s ~(qg—q,)°

Scaling relation in percolation theory:

r—1=dov

(o2

1
4. () =g (N) =N © = N

B 1
1 K—1
2_a K3—a_m3—a )
m(s—ajK“—mza K~ N
For 3<a <4 For 2<a <3
3—_a qc(oo):O
Ag, = q.(0)=q.(N)~ Ax ~ K ~ N q.(N)~1/x(N)~K*”
O':a_3,3<06<4 0:3_a,2<a<3
a—2

a—2
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Percolation for Intentional Attack

Attack has two kinds of influence on the connectivity distribution:
" Change in the upper cutoff

Can be calculated by ZP(k) =p,

or approximately: K =mp"*

" Change in the connectivity of all other sites due to possibility of a
broken link (which is different than in random breakdown).

The probability of a link to be removed can be calculated by:

_ 1 K
p= kP(k)
Ty 2270,

or approximately: p=p

(2-a)/(1-a)

1

Substituting this into: 1- p. = PIRE

— (2-a\K “-m"™ . ..
Where ¥ =| 3" |== ", gives the critical threshold.
K -m™™

There exists a finite percolation threshold even for networks resilient to random
error!
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The Model

Intentional Attack

The fraction, 7, of nodes with the highest connectivity are removed.

Is this fundamentally different from random breakdown?
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Condition for the Existence of a Spanning Cluster
If we start moving on the cluster from a single site, in order that the
cluster does not die out, we need that each site reached will have, on
average, at least 2 links (one “in” and one “out”).
This means:

(k,|i o> j)=2 k,P(k,
k;

where i < j means that site i is connected to
site /.

i j)=>2
9

But, by Bayes rule:

P@i & jlk)P(k;)
P(i o j)

P(k,

i< j)=

We know that

P(ie jk)= N—l—l Exponential graph:

and o <k2>_<k>2+<k>_2
i = =

pio - TSR

= (k)=1
Combining all this together: Cayley Tree:
()
K==
<k> (for every distribution)
at the critical point.
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Percolation for Random Breakdown

If percolation is considered the connectivity distribution changes
according to the law:

_ kY
P(k) = ZP(k')( kjp”a -p)'

k'>k

Calculating the change in « gives the percolation threshold:

1 (ks )

1-p. . —1> Where %o = m

Plugging in the scale-free distribution with lower cutoff 7, and upper
cutoff X, gives:

2_a K3—a_m3—a L
Koy = I_g) KXo — 2 K~ Not,

For scale-free graphs with o <3 the second moment diverges —
No critical threshold!
Network is stable even for p— 1.
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Percolation in complex Networks T h e M 0 d el

Random Breakdown

The Internet is believed to be a randomly connected scale-free network
where

P(k) ck™® a=~25

Nodes are randomly removed with
probability p

Where does a phase transition occur?
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Random Breakdown

>
0a 0.8~ T
' _ a=25
vl | <, 0.6 N=10",10%,10" -
o & I |
P = 0=3.5
L ) 5 0.4- .
0.2 _ 0.27_ T
S W % 02 04 06 08T
2 2.5 3 3.5 4 4.5 5 E = p 2 =
(04
a < 3 -no critical threshold — a spanning cluster always exists
o > 3 - acritical threshold exists
Intentional Attack
0.08 ‘ : : : 1
0.8
0.6
| P_m
0.4
i 0.2
O

A critical threshold exist for every o
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Using the properties of power series near a singular point
(Abelian methods), the behavior near the critical point can be

studied.

The behavior near criticality in scale-free networks is different

than for exponential ones!

Even for networks with 3 <@ <4, in which () and (k’) are finite,
the critical exponents change from the known mean-field result

B =1.

The order of the phase transition and the exponents are

determined by (k*).

Size of the infinite cluster:

! 2<a <3
3—-«a
p f = ! 3<a <4
P, ~(p-p.) a -3
1 a >4

Distribution of finite clusters at criticality:
20 -3
a — 2

a < 4

§ 2.5 a >4
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Fractal Dimensions

From the behavior of the critical exponents the fractal dimension of
scale-free graphs can be deduced.

Far from the critical point - the dimension is infinite - the mass grows
exponentially with the distance.

¢ =2 a <4
dl —Ja— 3
Chemical dimension: o) a > 4
2472 44
: : d, =y %7 :
Fractal dimension: 4 a > 4
ol 4
d = @~ 3
Embedding dimension: ’ 6 a > 4

The dimensionality of the graphs depends on the distribution!



Behavior of the Site to Site Distance near Criticality
In standard random graph models the average distance between sites scales as: 7 ~ log, N,

where N is the system size.

That is, the mass behaves as: M ~ k",
From infinite dimensional percolation theory it is known: M ~r, or r~+M at p= D,
This is also true for scale-free networks with @ > 4.

A crossover exists between those behaviors where the correlation length: s~ (p- Pc)_l-
10°

M/E™ 9% |

100 ¢

2

10

2

10
/g

Communication becomes inefficient even before the breakdown
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Conclusions and Applications
e The Internet is resilient to random breakdown.

e The Internet is sensitive to intentional attack on the most highly
connected nodes.

e Large networks can have their connectivity distribution
optimized for maximum resilience to random breakdown and/or
intentional attack.

e A virus has a finite probability of infecting a large portion of the
Internet, regardless of how low is the probability of infection.

e However, if a finite fraction of the most highly connected routers
of the Internet block the virus, it cannot infect a finite portion of
the Internet.

e Even before breakdown the diameter of the spanning cluster
becomes large — making communication inefficient.

e The critical exponents for scale-free networks are different than
those in exponential networks — different universality class!
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Small World

A small world network 1s a regular lattice with added random links.

Examples:
e Movie actors
e Polymer chains configuration space
e Acquaintance networks
e Neural networks

Exponents are the same as in mean-field percolation.
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Results of Stmulations and Theory

Random m=1,2.3 Attack m=1,2,3
n=500000 n=500000
1 3 T @ 0.5 T T I T T
i " m=3 D
08—
06—
pc B
04—
02—
L 1 | 1 | 1 U 2l
02 02 2 3 35 4
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Experimental Data: Virus survival

1]

I.D E@ T T T T T T

i 2 boot

B o file

= 14 months & macro

10" .
n” ]
D_
. o 8”
10° ¢ .

0 10 20 T 30

t (months)

FIG. 1. Surviving probability for viruses in the wild. The 814 different viruses analyzed have
been grouped in three main sirains [9]: file viruses infect a computer when running an infected
application; boot viruses also spread via infected applications, but copy themselves into the boot
sector of the hard-drive and are thus immune to a computer reboot; macro viruses infect data
files and are thus platform-independent. It is evident in the plot the presence of an exponential
decay, with characteristic time 7 ~ 14 months for macro and boot viruses and 7 =~ 7 months for

file viruses.

(Pastor-Satorras and Vespignani, Phys. Rev Lett. 86, 3200 (2001))
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Scale Free Random Graph
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Percolation and Immunization

Percolation theory

—_

p=03 }
remove
or

immune I 0
» I
[

Network exists

B, Prob. that a site belongs
I I to a spanning cluster
: p
P,~(p-p.)
— Order parameter
p=0.5 I
im(:;une 0 Pe p

Network collapse
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Size of the Spanning Cluster

The spanning cluster size can be determined using either differential
equations (Molloy & Reed, Combinatorics, Probability & Statistics, (1998)), or by the
generating function method (Callaway et. al., Phys. Rev. Lett. 85, 5624 (2000)) .

If After time :, ‘N links have been followed, the change in the number
dP(k,t)  kP(k,t)

of unexposed nodes of connectivity & is: = ;. = ey —2¢—1"

The number of open links in the cluster is: X(t) ={(k)—2t-> kP(k,r). When
the entire cluster has been exposed.

Solving this gives the cluster size:
P, =(1-p)1-2 P(kyu")
k=0
where v is the smallest positive root of:

0 kPk k-1
u=p+<1—p>;%

(Cohen et al., Phys. Rev. Lett. 86, 3682 (2001))
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Efficient Immunization Strategies:

Acquaintance Immunization

Critical Threshold

Scale Free

*Random immunization is inefficient
in scale free graphs, while targeted

1_ i immunization requires knowledge of
i the degrees.
s * In Acquaintance Immunization one
immunizes random neighbors of
0.6 . ae s
random individuals.
C * One can also do the same based on
0.4r neighbors.
*The threshold is finite and no global
knowledge is necessary.
l ZP(k)(k 1)(k/ (k)| v, e =1

Cohen et al cond-mat/0207387

fo=1= Pk,
= kP(k)exp(—p/k)/{k)
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Results of Simulations and Theory

Random m=12,3 Attack m=1,2,3

n=500000 n=500000
T T 0.5 T T T

m=3

08—

06—

P
A
Efficient Immunization Strategy
1 .

0.8 - Random immunization is inefficient in scale

I free graphs, while targeted immunization requires
0.6r knowledge of the degrees.
D. 04- - . o . .
I |« In Acquaintance Immunization one immunizes
random neighbors of random individuals.
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