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Weak disorder (WD) – all contribute to the sum (narrow distribution)

Strong disorder (SD)– a single term dominates the sum (broad distribution)

SD – example: Broadcasting video over the Internet,

a transmission at constant high rate is needed.

The narrowest band width link in the path

between transmitter and receiver controls the rate.
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Optimal path – weak disorder
Random Graphs and Watts Strogatz Networks
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Scale Free – Optimal Path – Weak disorder
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Optimal path – strong disorder
Random Graphs and Watts Strogatz Networks

CONSTANT SLOPE

0n - typical range of neighborhood 

without long range links

0n
N - typical number of nodes with 

long range links

3
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~ Nlopt Analytically and Numerically

LARGE WORLD!!

Compared to the diameter or 
average shortest path or weak 
disorder

Nl log~min (small world)

N – total number of nodes



Scale Free – Optimal Path
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LARGE WORLD!!

SMALL WORLD!!

Braunstein, Buldyrev, Cohen, Havlin, Stanley,   
Phys. Rev. Lett. 91, 247901 (2003);
Cond-mat/0305051
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Theoretical Approach – Strong Disorder
(i) Distribute random numbers 0<u<1 on the links of the network.

(ii) Strong disorder represented by )exp( ii au=ε with .∞→a

(iii) The largest iu in each path between two nodes dominates the sum. 

(iv) The optimal path is the path with the min-max

(vi) The optimal path must therefore be on the 
percolation cluster at criticality.
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What do we know about percolation clusters

at criticality in networks?

(v) Percolation exists if we remove all links with 1i cu p> −



Theoretical Approach – Strong Disorder

(i) Percolation on random networks is like percolation

in or∞→d .cdd =
(ii) Since loops can be neglected the optimal path can 

be identified with the shortest path on percolation-only

a single path exist between any nodes.

Mass of infinite cluster fdRS ~ dRN ~

For ER 3/26/4/~ NNNS dd f == (see also Erdos-Renyi, 1960)
)2(,~ 2 =ldlS

3/12/1 ~~~ NSlloptfor ER, WS and SF with :4>

where 

From percolation 

Thus, λ
For SF with             43 << λ ,, fc dd and ld change due to novel topology: )1/()3(~ −− λλNlopt
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Conclusions

Calculate the length of shortest path: 

,6=cd



Random Graphs – Erdos Renyi(1960)

Largest cluster at criticality
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Scale Free networks

Fractal Dimensions

From the behavior of the critical exponents the fractal dimension of scale-free graphs 
can be deduced.

Far from the critical point - the dimension is infinite - the mass grows exponentially 
with the distance.

At criticality - the dimension is finite for  λ>3 .
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(upper critical dimension)

The dimensionality of the graphs depends on the distribution!



Random Graph (Erdos-Renyi)Scale Free (Barabasi-Albert)

Small World (Watts-Strogatz)

Z = 4

!
)(

k
kekP

k
k 〉〈

= 〉〈−

λ−= AkkP )(



Shortest Paths in Scale Free Networks

loglog

. 2

log 3
loglog
log

2

3

3

d const

Nd
N

d N

d N

λ

λ

λ

λ

= =

= =

=

= <

>

<

(Bollobas, Riordan, 2002)

(Bollobas, 1985)
(Newman, 2001)

Cohen, Havlin and ben-Avraham, in Handbook of Graphs and Networks 

eds. Bornholdt and Shuster (Willy-VCH, NY, 2002) Chap.4

Cohen, Havlin Phys. Rev. Lett. 90, 58701(2003)

Also by: Dorogovtsev, Mendes et al (2002), Chung and Lu (2002)
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( ) ~P k k λ−

Same as for ER and WS



Optimal path – weak disorder
Random Graphs and Watts Strogatz Networks
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Theoretical Approach – Strong Disorder

(i) Distribute random numbers 0<u<1 on the links of the network.

(ii) Strong disorder represented by  )exp( ii au=ε with .∞→a
(iii) The largest iu in each path between two nodes dominates the sum. 

(iv) The min-max          are on the percolation cluster where               iu .ci pu
(v) The optimal path must therefore be on the percolation cluster at criticality.

(vi) Percolation on random networks is like percolation in      or                   

<

∞→d .cdd =
(vii) Since loops can be neglected the optimal path can be identified with the shortest path.

Mass of infinite cluster fdRS ~ dRN ~
3/26/4/~ NNNS dd f == (see also Erdos-Renyi, 1960)

Since  2 2~  it follows that ~ , ( 2)r S d =
3/12/1 ~~~ NSlloptfor ER, WS and SF with :4>

where 

Thus, 
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Scale Free – Optimal Path – Weak disorder
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Optimal path – strong disorder
Random Graphs and Watts Strogatz Networks

CONSTANT SLOPE

0n - typical range of neighborhood 

without long range links

0n
N - typical number of nodes with 

long range links

3
1

~ Nlopt Analytically and Numerically

LARGE WORLD!!

Compared to the diameter or 
average shortest path or weak 
disorder

Nl log~min (small world)

N – total number of nodes



Scale Free – Optimal Path
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Transition from weak to strong disorder
For a given disorder strength a ))exp(( ii au=ε

)(** aNN =

Sreenivasan et al      Phys. Rev. E 
Submitted (2004)

For details see POSTER 
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Conclusions and Applications
• Distance in scale free networks λ<3 : d~loglogN - ultra small world, λ>3 : d~logN.

• Optimal distance – strong disorder – Random Graphs and WS 

scale free

•Transition between weak and strong disorder  

•Scale Free networks (2<λ<3) are robust to random breakdown.

• Scale Free networks are vulnerable to attack on the highly connected nodes.

• Efficient immunization is possible without knowledge of topology, using Acquaintance 
Immunization.

• The critical exponents for scale-free directed and non-directed networks are different 
than those in exponential networks – different universality class!

•Large networks can have their connectivity distribution optimized for maximum 
robustness to random breakdown and/or intentional attack.
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