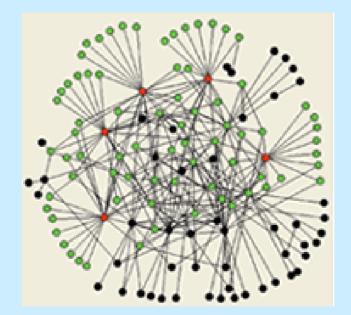
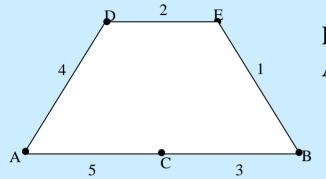
Percolation in Complex Networks: Optimal Paths and Minimum Spanning Trees



Optimal Distance - Disorder



Path from A to B

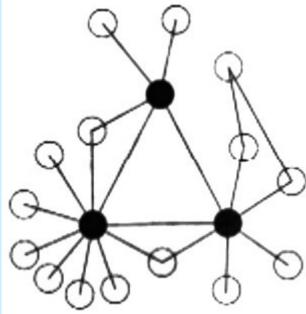
 $l_{\min}=2(ACB)$

$$l_{\text{opt}} = 3(\text{ADEB})$$

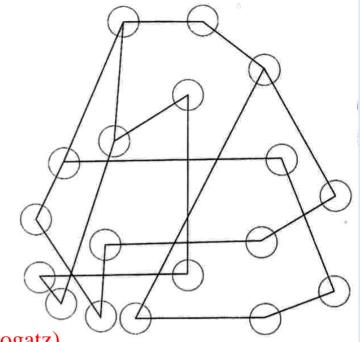
 $w_i = \text{weight} = \text{price, quality, time....}$ $\sum_i w_i = \text{minimal} \implies \text{optimal path}$ Weak disorder (WD) – all w_i contribute to the sum (narrow distribution) Strong disorder (SD)– a single term dominates the sum (broad distribution) SD – example: Broadcasting video over the Internet, a transmission at constant high rate is needed. The <u>narrowest</u> band width <u>link</u> in the path between transmitter and receiver controls the rate. Percolation: Theory and Applications

Prof. Shlomo Havlin

Scale Free (Barabasi-Albert)

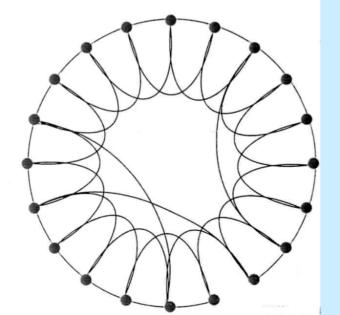


Random Graph (Erdos-Renyi)



Small World (Watts-Strogatz)

Z = 4



Optimal Path

 $\ell_{opt} \sim r^{dopt}$

 $\ell \sim r^{d\min}$

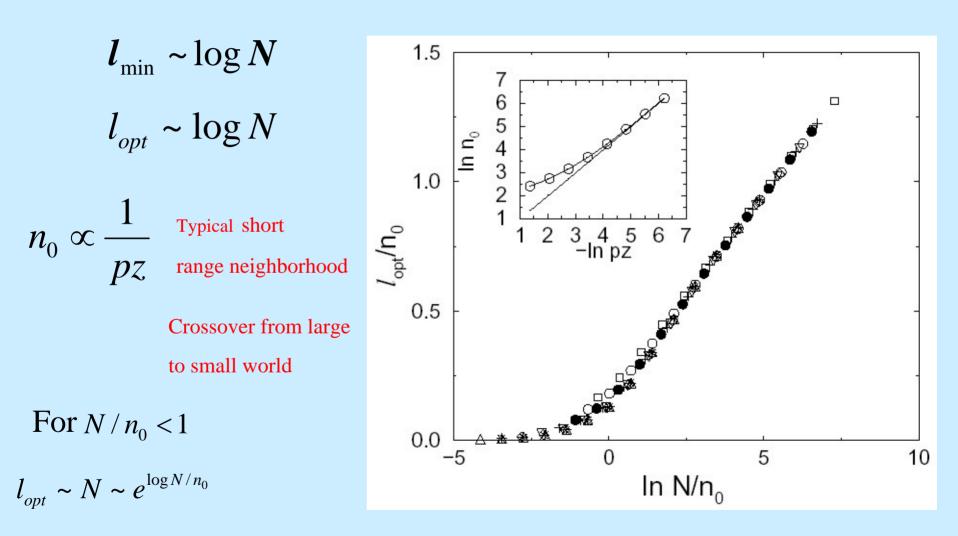
d	d_{\min}	$\overset{ ext{SD}}{d_{opt}}$	WD d_{opt}
2	1.13	1.22	1
3	1.37	1.41	1
4	1.59		1
5			1
6	2	2	1

Strong Disorder and Percolation

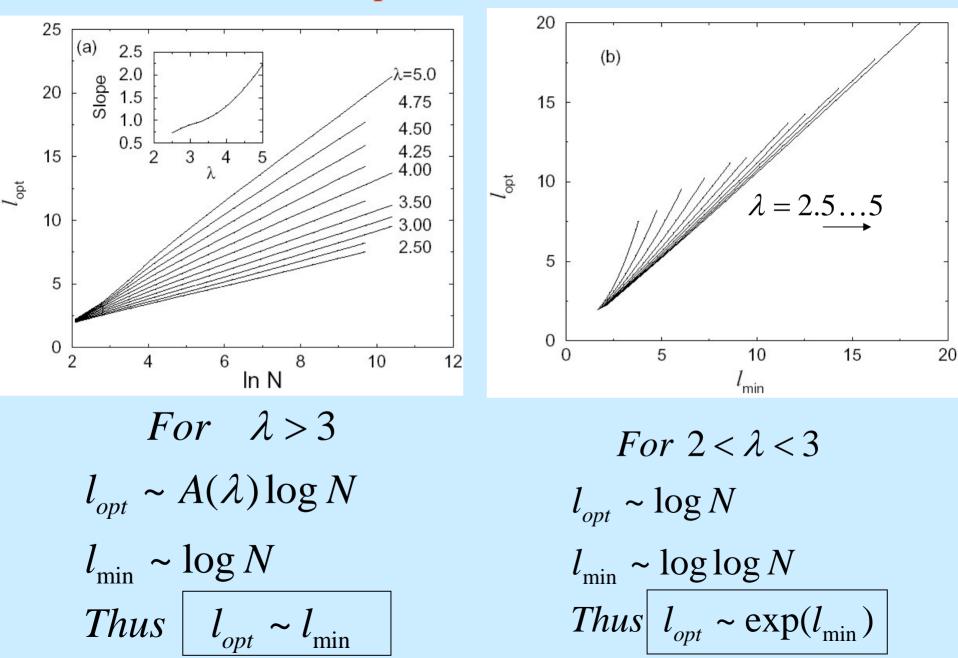
	0.9	0.3	0.9		
	0.6 0.2	0.4 0.1	0.3 0.4	0.6	A
	0.1 0.3	0.8 0.1	0.4 0.1	0.3	
В	0.2 0.4	0.9 0.7	0.1 0.6	0.8	

Optimal path – weak disorder

Random Graphs and Watts Strogatz Networks

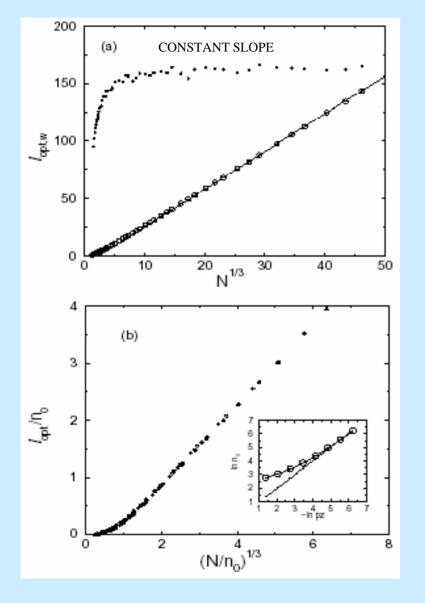


Scale Free – Optimal Path – Weak disorder



Optimal path – strong disorder

Random Graphs and Watts Strogatz Networks



N – total number of nodes

 $l_{opt} \sim N^{\frac{1}{3}}$ Analytically and Numerically

LARGE WORLD!!

Compared to the diameter or average shortest path or weak disorder

$$l_{\min} \sim \log N$$
 (small world)

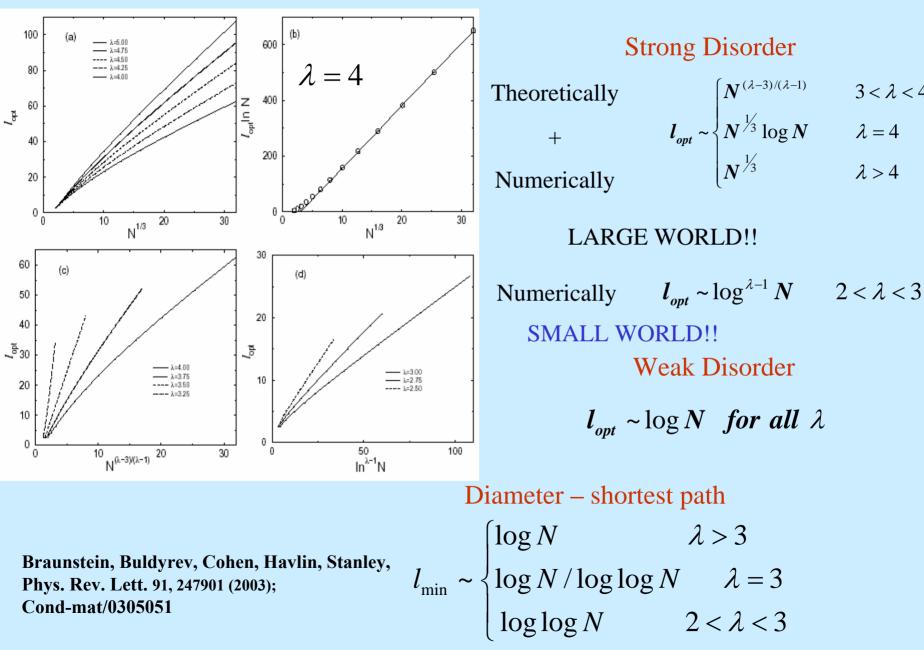
- \boldsymbol{n}_0 typical range of neighborhood without long range links
- $\frac{N}{n_0}$ typical number of nodes with long range links

 $3 < \lambda < 4$

Strong Disorder

Weak Disorder

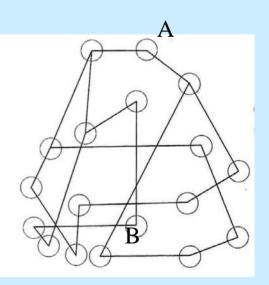
Scale Free – Optimal Path



(i) Distribute random numbers 0<u<1 on the links of the network.

- (ii) Strong disorder represented by $\varepsilon_i = \exp(au_i)$ with $a \to \infty$.
- (iii) The largest u_i in each path between two nodes dominates the sum. (iv) The optimal path is the path with the min-max (v) Percolation exists if we remove all links with $u_i > 1 - p_c$
- (vi) The optimal path must therefore be on the percolation cluster at criticality.

What do we know about percolation clusters at criticality in networks?



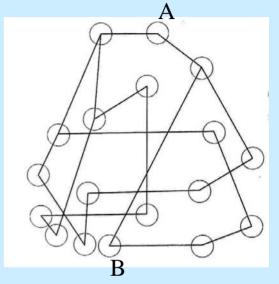
Theoretical Approach – Strong Disorder Conclusions

(i) Percolation on random networks is like percolation

in $d \to \infty$ or $d = d_c$.

(ii) Since loops can be neglected the optimal path canbe identified with the shortest path on percolation-onlya single path exist between any nodes.

Calculate the length of shortest path:



Mass of infinite cluster $S \sim R^{d_f}$ where $N \sim R^d$ For ER $d_c = 6$, $S \sim N^{d_f/d} = N^{4/6} = N^{2/3}$ (see also Erdos-Renyi, 1960) From percolation $S \sim l^2$, $(d_l = 2)$

Thus, for ER, WS and SF with $\lambda > 4$: $l_{opt} \sim l \sim S^{1/2} \sim N^{1/3}$ For SF with $3 < \lambda < 4$ d_c , d_{f_i} and d_l change due to novel topology: $l_{opt} \sim N^{(\lambda-3)/(\lambda-1)}$

Fractal Dimensions

From the behavior of the critical exponents the fractal dimension of scale-free graphs can be deduced.

Far from the critical point - the dimension is infinite - the mass grows exponentially with the distance.

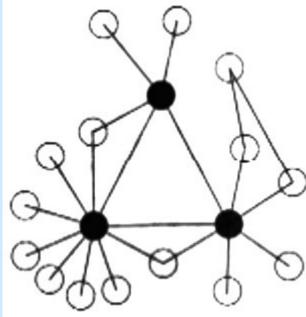
At criticality - the dimension is finite for
$$\lambda > 3$$
.
Short path dimension:
 $S \sim \ell^{d_{\ell}}$
Fractal dimension:
 $S \sim R^{d_{f}}$
Embedding dimension:
 $(upper critical dimension)$
 $d_{i} = \begin{cases} \frac{\lambda - 2}{\lambda - 3} & \lambda < 4 \\ 2 & \lambda \ge 4 \end{cases}$
 $d_{i} = \begin{cases} 2\frac{\lambda - 2}{\lambda - 3} & \lambda < 4 \\ 4 & \lambda \ge 4 \end{cases}$
 $d_{i} = \begin{cases} 2\frac{\lambda - 2}{\lambda - 3} & \lambda < 4 \\ 4 & \lambda \ge 4 \end{cases}$
 $d_{i} = \begin{cases} 2\frac{\lambda - 1}{\lambda - 3} & \lambda < 4 \\ 6 & \lambda \ge 4 \end{cases}$
 $S \sim R^{d_{i}} \sim N^{\frac{2}{3}}$
 $\lambda \ge 4$
 $S \sim R^{d_{i}} \sim N^{\frac{d_{i}}{d_{c}}} \sim N^{\frac{\lambda - 2}{\lambda - 1}} & \lambda \le 4 \end{cases}$

The dimensionality of the graphs depends on the distribution!

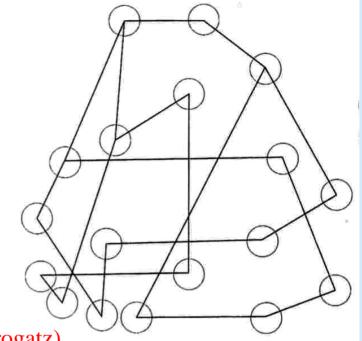
Percolation: Theory and Applications

Prof. Shlomo Havlin

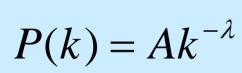
Scale Free (Barabasi-Albert)

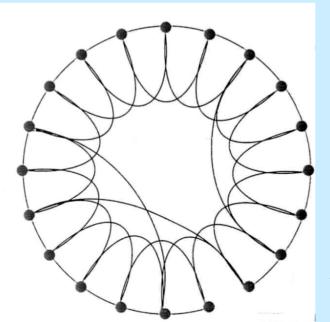


Random Graph (Erdos-Renyi)



Small World (Watts-Strogatz)





$$P(k) = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

$$\mathbf{Z} = 4$$

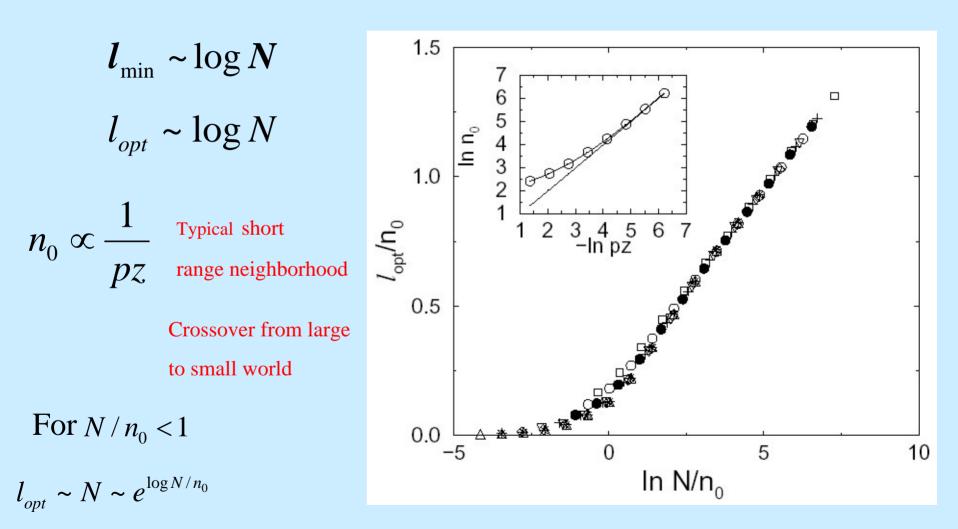
Shortest Paths in Scale Free Networks

$P(k) \sim k^{-\lambda}$					
	d = const.	$\lambda = 2$			
Ultra Small World	$d = \log \log N$	$2 < \lambda < 3$			
	$d = \frac{\log N}{\log \log N}$	$\lambda = 3$	(Bollobas, Riordan, 2002)		
Small World	$d = \log N$ Same as for ER and W	$\lambda > 3$	(Bollobas, 1985) (Newman, 2001)		

Cohen, Havlin and ben-Avraham, in Handbook of Graphs and Networks eds. Bornholdt and Shuster (Willy-VCH, NY, 2002) Chap.4
Cohen, Havlin Phys. Rev. Lett. 90, 58701(2003)
Also by: Dorogovtsev, Mendes et al (2002), Chung and Lu (2002)

Optimal path – weak disorder

Random Graphs and Watts Strogatz Networks

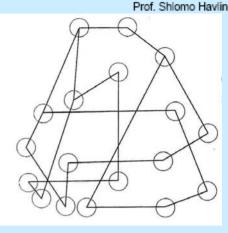


Theoretical Approach – Strong Disorder

- (i) Distribute random numbers 0<u<1 on the links of the network.
- (ii) Strong disorder represented by $\mathcal{E}_i = \exp(au_i)$ with $a \to \infty$
- (iii) The largest u_i in each path between two nodes dominates the sum.
- (iv) The min-max u_i are on the percolation cluster where $u_i < p_c$.
 - (v) The optimal path must therefore be on the percolation cluster at criticality.
 - (vi) Percolation on random networks is like percolation in $d \to \infty$ or $d = d_c$.
 - (vii) Since loops can be neglected the optimal path can be identified with the shortest path.
 - Mass of infinite cluster $S \sim R^{d_f}$ where $N \sim R^d$

Thus, $S \sim N^{d_f/d} = N^{4/6} = N^{2/3}$ (see also Erdos-Renyi, 1960) Since $\ell \sim r^2$ it follows that $S \sim \ell^2$, $(d_\ell = 2)$

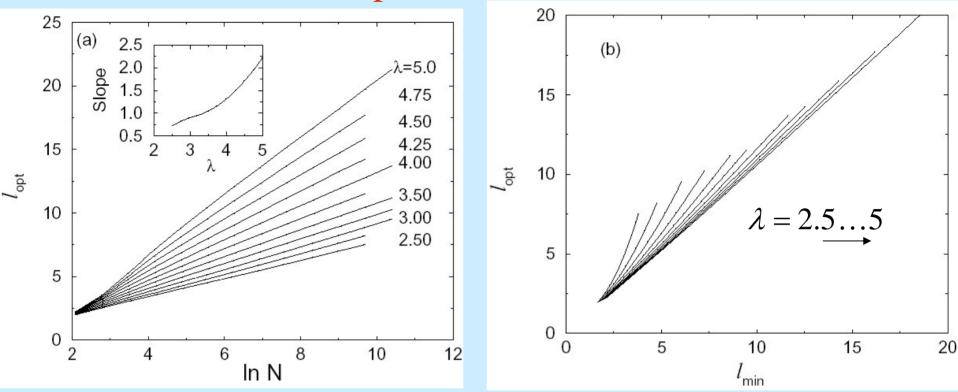
Thus, for ER, WS and SF with $\lambda > 4$: $l_{opt} \sim l \sim S^{1/2} \sim N^{1/3}$ For SF with $3 < \lambda < 4$ d_c , d_{f_i} and d_l change due to novel topology: $l_{opt} \sim N^{(\lambda-3)/(\lambda-1)}$



Percolation: Theory and Applications

Prof. Shlomo Havlin

Scale Free – Optimal Path – Weak disorder



For
$$\lambda > 3$$

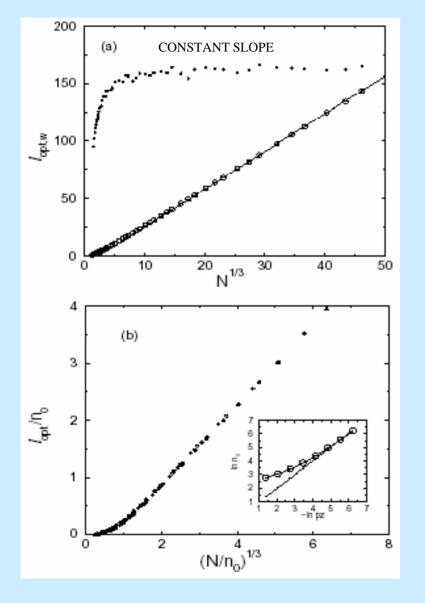
 $l_{opt} \sim A(\lambda) \log N$
 $l_{min} \sim \log N$
Thus $l_{opt} \sim l_{min}$

For
$$2 < \lambda < 3$$

 $l_{opt} \sim \log N$
 $l_{min} \sim \log \log N$
Thus $l_{opt} \sim \exp(l_{min})$

Optimal path – strong disorder

Random Graphs and Watts Strogatz Networks



N – total number of nodes

 $l_{opt} \sim N^{\frac{1}{3}}$ Analytically and Numerically

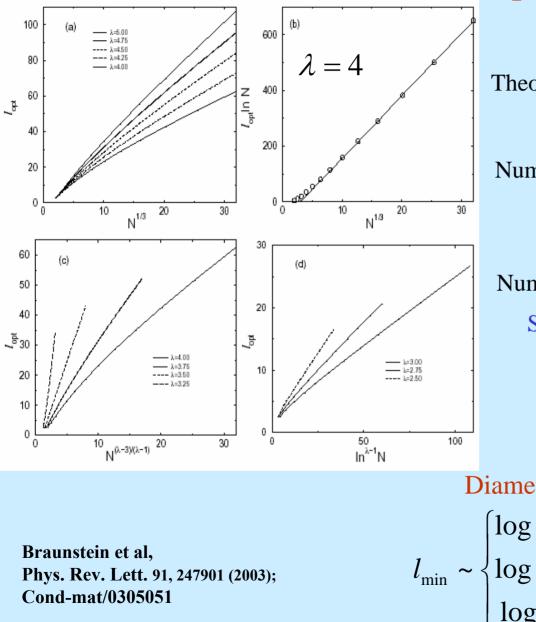
LARGE WORLD!!

Compared to the diameter or average shortest path or weak disorder

$$l_{\min} \sim \log N$$
 (small world)

- \boldsymbol{n}_0 typical range of neighborhood without long range links
- $\frac{N}{n_0}$ typical number of nodes with long range links

Scale Free – Optimal Path



SI	Tong Disolder	
Theoretically	$iggl(\lambda^{(\lambda-3)/(\lambda-1)})$	$3 < \lambda < 4$
+	$\boldsymbol{l_{opt}} \sim \begin{cases} \boldsymbol{N}^{\frac{1}{3}} \log \boldsymbol{N} \\ \boldsymbol{N}^{\frac{1}{3}} \end{cases}$	$\lambda = 4$
Numerically	$\left(N^{\frac{1}{3}} \right)$	$\lambda > 4$

Strong Disorder

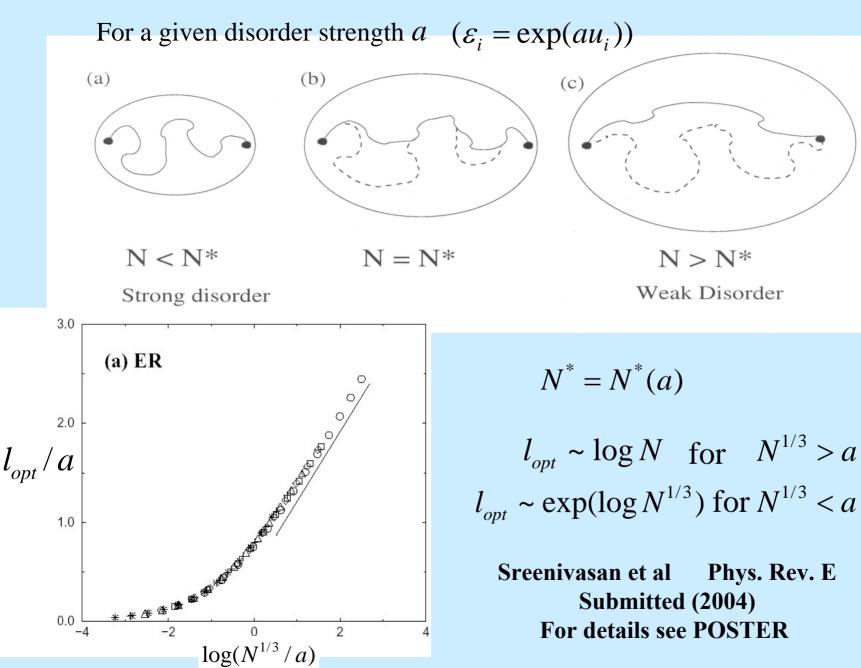
Numerically $l_{opt} \sim \log^{\lambda - 1} N$ $2 < \lambda < 3$ SMALL WORLD!! Weak Disorder

LARGE WORLD!!

$$l_{opt} \sim \log N$$
 for all λ

Diameter – shortest path $l_{\min} \sim \begin{cases} \log N & \lambda > 3 \\ \log N / \log \log N & \lambda = 3 \\ \log \log N & 2 < \lambda < 3 \end{cases}$

Transition from weak to strong disorder



Conclusions and Applications

- Distance in scale free networks $\lambda < 3$: d~loglogN ultra small world, $\lambda > 3$: d~logN.
- Optimal distance strong disorder Random Graphs and WS $l_{opt} \sim N^{\frac{1}{3}}$ Large World

scale free
$$\begin{cases} l_{opt} \sim N^{\frac{\lambda-3}{\lambda-1}} & \text{for } \lambda > 3 \implies \text{Large World} \\ l_{opt} \sim \log^{\lambda-1} N & \text{for } 2 < \lambda < 3 \implies \text{Small World} \end{cases}$$

- •Transition between weak and strong disorder
- •Scale Free networks ($2 < \lambda < 3$) are robust to random breakdown.
- Scale Free networks are vulnerable to attack on the highly connected nodes.
- Efficient immunization is possible without knowledge of topology, using Acquaintance Immunization.
- The critical exponents for scale-free directed and non-directed networks are different than those in exponential networks different universality class!
- •Large networks can have their connectivity distribution optimized for maximum robustness to random breakdown and/or intentional attack.