Optimal Paths and Minimum
Spanning Trees

nnnnnnnnnnnnnnnnnnnn . Shiomo Havlin



Percolation: Theory and Applications

Optimal Distance - Disorder
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E Path from l..= 2(ACB)
AtoB
4 1 ° l..= 3(ADEB)
A c .C . B

W; = weight = price, quality, time.....

Zwi = minimal = optimal path
| Weak disorder (WD) —all W, contribute to the sum (narrow distribution)
Strong disorder (SD)- a single term dominates the sum (broad distribution)
SD — example: Broadcasting video over the Internet,
a transmission at constant high rate is needed.
The narrowest band width_link in the path

between transmitter and receiver controls the rate.
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Scale Free (Barabasi-Albert) Random Graph (Erdos-Renyi)
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Small World (Watts-Strogatz)
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Optimal Path

e PO ) ~ pdmin
SD WD
d dmin dopt opt
2 1.13 1.22 1
3 1.37 1.41 1
4 1.59 1
5 1
6 2 2 1
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Strong Disorder and Percolation
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Optimal path — weak disorder
Random Graphs and Watts Strogatz Networks
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Scale Free — Optimal Path — W
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For A>3
l,.. ~ A(4)log N
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eak disorder
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For 2<A<3
l, ~10g N

| .. ~loglogN

Thus

Iopt - exp(l min )
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Optimal path — strong disorder
Random Graphs and Watts Strogatz Networks
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Scale Free — Optimal Path
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Numerically o, ~log"™ N  2<1<3

SMALL WORLD!
Weak Disorder

l,x ~logN for all A

Diameter — shortest path
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logN /loglogN  41=3
| loglog N 2<A<3

Braunstein, Buldyrev, Cohen, Havlin, Stanley,
Phys. Rev. Lett. 91, 247901 (2003); |min
Cond-mat/0305051
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Theoretical Approach — Strong Disorder
(1) Distribute random numbers O<u<1 on the links of the network.

(ii) Strong disorder represented by & =exp(au;,) With  a — .

(i11) The largest U; in each path between two nodes dominates the sum.
(iv) The optimal path Is the path with the min-max
(v) Percolation exists if we remove all links with U, > 1-— P.

(vi) The optimal path must therefore be on the
percolation cluster at criticality.

What do we know about percolation clusters

at criticality in networks?
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Theoretical Approach — Strong Disorder
Conclusions

(1) Percolation on random networks is like percolation

ind >0wor d=d..
(i1) Since loops can be neglected the optimal path can

be identified with the shortest path on percolation-only

a single path exist between any nodes.

Calculate the length of shortest path:

Mass of infinite cluster S ~ R®" where N ~ R°
de/d _ ny4/6 _ N1 2/3 .
ForERd, =6,S~N"""" =N"" =N~ (see also Erdos-Renyi, 1960)
From percolation S ~ |2, (d| = 2)

Thus, for ER, WS and SF with 4 > 4: e ~ 1~ SY%~ N
For SFwith 3< 1 <4 dc,df’ and d , change due to novel topology: Iopt ~ N A-3/(4-1)
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Fractal Dimensions

From the behavior of the critical exponents the fractal dimension of scale-free graphs
can be deduced.

Far from the critical point - the dimension is infinite - the mass grows exponentially
with the distance.

A>3

(1_9 Random Graphs — Erdos Renyi(1960)
— A<4
Short path dimension:  d, = - A=3 Largest cluster at criticality
g 2 124 2
S~ 17 o S ~ N3
2272 j 4
Tyt St d, =1 A=3 Scale Free networks
0 \ 4 A=>4 d d .
D =R [ A-1 S~R" ~N% ~N#1 1<4
2—— A<4 ,
Embedding dimension: d_ =- SN2 P
(upper critical dimension) 6 A>4

The dimensionality of the graphs depends on the distribution!
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Scale Free (Barabasi-Albert) Random Graph (Erdos-Renyi)




Percolation: Theory and Applications Prof. Shiomo Hawlin

Shortest Paths in Scale Free Networks

P(k) ~ k™
d = const. A=2
Ultra
Smal d =loglogN 2<A<3
World
p— Iog N 2« — 3 (Bollobas, Riordan, 2002)

loglog N
smanworia 0 =logN A>3 Coerio

Same as for ER and WS

Cohen, Havlin and ben-Avraham, in Handbook of Graphs and Networks
eds. Bornholdt and Shuster (Willy-VCH, NY, 2002) Chap.4

Cohen, Havlin Phys. Rev. Lett. 90, 58701(2003)

Also by: Dorogovtsev, Mendes et al (2002), Chung and Lu (2002)
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Optimal path — weak disorder
Random Graphs and Watts Strogatz Networks
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Theoretical Approach — Strong Disorder

(i) Distribute random numbers 0<u<1 on the links of the network.

(ii) Strong disorder represented by &; = €Xp(au.) witha —» oo « :

(iif) The largest u. in each path between two nodes dominates the sum.
(iv) The min-max u, areon the percolation cluster where u. < p..
(v) The optimal path must therefore be on the percolation cluster at criticality.
(vi) Percolation on random networks is like percolation in d — coor d = dc,
(vii) Since loops can be neglected the optimal path can be identified with the shortest path.

o d
Mass of infinite cluster S ~R°" where N ~ R

Thus, S~ N9 = N#6 = N2/3 (see also Erdos-Renyi, 1960)
since ¢ ~ r* it follows that S ~ /%, (d, = 2)

Thus, for ER, WS and SF with 4 >4 Lot ~ 1~ SY2 ~ NY°

For SFwith 3< 32<4 d_,d, and d,change due to novel topology: Iopt ~ N A-3/(4-1)
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eak disorder
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Optimal path — strong disorder
Random Graphs and Watts Strogatz Networks
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Scale Free — Optimal Path
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Transition from weak to strong disorder
For a given disorder strength a (& = exp(au,))
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Sreenivasan et al  Phys. Rev. E
o Submitted (2004)
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Conclusions and Applications

* Distance in scale free networks A<3 : d~loglogN - ultra small world, A>3 : d~logN.

* Optimal distance — strong disorder — Random Graphs and WS |, ~N s Large World
A-3

{ e ~ N4 for A>3 —>Large World
scale free _

le ~10g"* N for 2<A<3 =Small World

*Transition between weak and strong disorder
*Scale Free networks (2<A<3) are robust to random breakdown.
*® Scale Free networks are vulnerable to attack on the highly connected nodes.

e Efficient immunization is possible without knowledge of topology, using Acquaintance
Immunization.

® The critical exponents for scale-free directed and non-directed networks are different
than those in exponential networks — different universality class!

eLarge networks can have their connectivity distribution optimized for maximum
robustness to random breakdown and/or intentional attack.
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