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Two types of links:
1.  Connectivity
2.  Dependency

Raissa D’sousa-same typeCascading disaster



• Until now studies focused on the case of  a 
single network which is isolated AND does not 
interact or influenced by other systems. 

•Isolated systems rarely occur in nature or in   
technology -- analogous to non-interacting
particles (molecules, spins).   

• Results for interacting networks 
are strikingly different from  those of single 
networks. 

Interdependent Networks





Blackout in Italy (28 September 2003)

CASCADE OF FAILURES

Railway network, health care systems, financial services, communication systems 

Power  grid
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SCADA

Power  grid

Blackout in Italy (28 September 2003)

SCADA=Supervisory Control And Data Acquisition 
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Network A

Network B

Further Examples of Interdependent Networks

• Economy: Networks of banks,
insurance companies,  and firms interact 
and depend  on each other. 

• Physiology: The human body can be regarded as  inter-dependent networks.  
For example, the cardio-vascular network system, the respiratory system, the brain    

network, and the nervous system all depend on each other. 

• Transportation : Railway networks, airline networks and other transportation systems 
are interdependent.

Failure in network A  
causes failure in B  causes further failure in A …..CASCADES
What are the critical percolation thresholds for such interdependent networks?
What are the sizes of cascade failures?  

Buldyrev, Parshani, Paul, Stanley, S.H., Nature,  (2010);  Parshani, Buldyrev, S.H. , Phys. Rev. Lett., (2010)

Appear in all aspects of life, nature and technology 

Critical Breakdown Threshold of Interdependent Networks



Robustness of a single network: Percolation
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In contrast--in coupled networks:
1. First Order-highly vulnerable
2. Cascading Failures
3. Broader degree-less robust!

Single Coupled

Cascades,
Sudden
breakdown

Breakdown threshold  cp



RANDOM  REMOVAL – PERCOLATION FRAMEWORK
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IN CONTRAST TO SINGLE NETWORKS,  COUPLED NETWORKS
ARE MORE VULNERABLE WHEN DEGREE DIST. IS BROADER

All with 4k =

Buldyrev, Parshani, Paul, Stanley, S.H. Nature (2010)
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Catastrophic cascades
just  below cp
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ER network
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RESULTS:  THEORY and SIMULATIONS: ER Networks

Removing 1-p nodes in A 
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PDF of number of cascades n at criticality for ER of size N

1/4n N



GENERALIZATION: PARTIAL DEPENDENCE:
Theory and Simulations 

P∞

Parshani, Buldyrev, S.H.
PRL, 105, 048701 (2010)

Strong q=0.8:
1st Order

Weak q=0.1:
2nd Order

q-fraction of dependency nodes



PARTIAL DEPENDENCE:
critical point

Analogous to critical point 
in liquid-gas transition: 



Network of Networks

Jianxi Gao et al (arXiv:1010.5829)

m=5

For ER,            , full  coupling ,
ALL loopless topologies (chain, star, tree):

Vulnerability increases significantly with m  
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Summary and Conclusions
• First statistical physics approach --mutual percolation--

for Interdependent Networks—cascading failures- 1st order transition

• Generalization to Partial Dependence:
Strong coupling: first order phase transition; Weak: second order

• Generalization to Network of Networks: 50ys of classical percolation
is a limiting case. E.g., only m=1 is 2nd order; m>1 are 1st order 

• Extremely vulnerable: broader degree distribution-more robust in 
single networks becomes less robust in interacting networks

Network A

Network B

Rich problem: different types of
networks and interconnections.

Buldyrev et al, NATURE (2010)
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