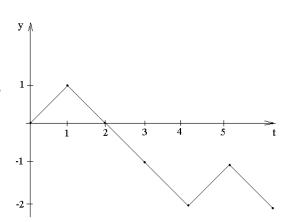

Complex Systems

Exercise 1


1) In the Sierpinski gasket we divide a triangle area into 4 equal triangles and remove the central triangle.

In the generalized gasket, one divides the triangle into 9 equal triangles and remove 3 triangles as in the figure:

- a) Show the next generation of this fractal.
- b) Generalize this fractal to any integer L and calculate the general fractal dimension as a function of L.
- 2) Given the first iteration of a fractal



- a) Generate the second iteration.
- b) Calculate d_f , d_l and d_{min} .
- c) Calculate \mathbf{a} , $\mathbf{d}_{\mathbf{f}}^{\mathbf{x}}$. $\mathbf{d}_{\mathbf{f}}^{\mathbf{y}}$.
- 3) Given the first iteration of a self-affine fractal

- a) Generate generate the second generation of the fractal.
- b) Calculate a, d_f^x . d_f^y .
- 4) A random walk can go up or down, with the same probability, one unit in the y axis at each time step shown in the x axis (see figure).

- a) Calculate the mean $\langle y \rangle$ and $\langle y^2 \rangle$ as function of t.
- b) Is the function y(t) self similar? Self-affine?
- c) Calculate a . d.x. d.y.