Complex Systems Exercise 2

1. Given the first generation of a fractal

- a) Plot the next generation and calculate its fractal dimension.
- b) Calculate the critical p_c for this fractal.
- c) Calculate the backbone dimension between A and B.
- d) Calculate the red bonds dimension.
- 2. For percolation clusters at $p = p_c$ we have the relation $\ell \sim r^{d_{\min}}$ where ℓ is the length of the shortest path between two sites of the cluster and r is the distance.
 - a) Describe what happens for $p > p_c$?
 - b) Write a scaling function that represent the crossover for $p > p_c$.
 - c) For case (b) and fixed r, how ℓ changes with p?
- 3. In percolation the density in the infinite cluster (for $p > p_c$) for $r > \zeta$ is constant and independent of r.
 - a) How does the density depend on $p p_c$?
 - b) How does the density depend on *r* for $r < \zeta$?
 - c) What happens when the system size is greater than the correlation length ζ .
- 4. Read section 2.4 in the book "Fractals and Disordered systems".
 - a) Calculate for one dimensional percolation γ , ν and β .
 - b) In percolation on a Cayley tree show that $\gamma = 1$, $\nu = 1$, $\beta = 1$ and $\tau = 5/2$.
 - c) Calculate d_{min} and d_f for the Cayley tree, and the upper critical dimension.