Fractals

Fractal geometry describes Nature better than classical geometry.
Two types of fractals: deterministic and random.

Deterministic fractals

Ideal fractals having self-similarity.
Every small part of the picture when magnified properly, is the same as the whole picture.

Self-similarity is a property, not a definition
To better understand fractals, we discuss several examples:

Koch curve

Building Koch curve

$$
\mathrm{n}=0 \quad \text { A section of unit length }
$$

$\mathrm{n}=1$
Divide each section to 3 equal pieces and replace the middle one by two pieces like a tent
$\mathrm{n}=2$
The same is done for all 4 sections

This is a mathematical fractal
In physics we continue until $n_{\max }$. We have a fractal for length scales $1 / 3^{n_{\text {max }}}<x<1$ Koch curve properties:
(a) $\left(\frac{4}{3}\right)^{n}=$ Length $\rightarrow \infty \quad$ for $\quad n=\infty$. But contains in a finite space. No derivative.
(b) Self-similarity - scale invariance
(c) No characteristic scale

Sierpinski gasket is perhaps the most popular fractal.
(1) divide an equilateral triangle into 4 equal triangles

Generation of Sierpinski gasket

3D Sierpinski gasket
(2) take out the central one
(3) repeat this for every triangle

No translation symmetry Scale invariance symmetry

Internal perimeter: $\frac{3}{2}+\frac{9}{4}+\frac{27}{8}+\ldots \rightarrow \infty$
Area: $S_{0}, \frac{3}{4} S_{0},\left(\frac{3}{4}\right)^{2} S_{0} \ldots \rightarrow 0$

2D Sierpinski gasket

Sierpisnki gasket with lower cut off

$$
n=2
$$

This is a fractal for $1<x<3^{n_{\text {max }}}$

Fractal dimension

How to quantify fractals?
Generalization of dimension to non-integer dimensions - fractal dimension (B.B. Mandelbrot, 1977)

Definition of dimension

* Take a line section of length L, divide into two, we get: $M\left(\frac{1}{2} L\right)=\frac{1}{2} M(L)$
* Take a square of length L, divide L by 2 we get: $M\left(\frac{1}{2} L\right)=\frac{1}{4} M(L)=\frac{1}{2^{2}} M(L)$
* Take a qube of length L , divide L by 2 we get: $M\left(\frac{1}{2} L\right)=\frac{1}{8} M(L)=\frac{1}{2^{3}} M(L)$

In general

$$
M(b L)=b^{d} M(L)
$$

The exponent d defines the dimension of system Solution: $M(L)=A L^{d}$ where A is a constant

Definition of fractal dimension $M(b L)=b^{d_{f}} M(L)$

generalization to non-integer dimension d_{f}

 Solution: $M(L)=A L^{d_{f}}$Example: Koch curve

$$
M\left(\frac{1}{3} L\right)=\frac{1}{4} M(L)=\left(\frac{1}{3}\right)^{d_{f}} M(L) \Rightarrow\left(\frac{1}{3}\right)^{d_{f}}=\frac{1}{4} \quad \text { or } \quad d_{f}=\frac{\log 4}{\log 3} \approx 1.262
$$

d_{f} - non integer - between 1 and 2 dimensions. Koch curve is not a line
$(\mathrm{d}=$) but doesn't fill a plane $(\mathrm{d}=)$.

Example: Sierpinski gasket

$$
M\left(\frac{1}{2} L\right)=\frac{1}{3} M(L)=\left(\frac{1}{2}\right)^{d_{f}} M(L) \Rightarrow\left(\frac{1}{2}\right)^{d_{f}}=\frac{1}{3} \quad \text { or } \quad d_{f}=\frac{\log 3}{\log 2} \approx 1.585
$$

Non integer dimension between 1 and 2 dimensions.

Example: Sierpinski sponge:

$$
M\left(\frac{1}{3} L\right)=\frac{1}{20} M(L)=\left(\frac{1}{3}\right)^{d_{f}} M(L) \Rightarrow\left(\frac{1}{3}\right)^{d_{f}}=\frac{1}{20} \quad \text { or } \quad d_{f}=\frac{\log 20}{\log 3} \approx 2.727
$$

Here the fractal dimension is between 2 and 3 .
Are there fractals with $d_{f}<1$?

Example: Cantor set

A section of unit size. Divide into 3 equal sections and remove the central one. Repeat it for every left section. For $n \rightarrow \infty$ we get a fractal set of points.

$$
M\left(\frac{1}{3} L\right)=\frac{1}{2} M(L)=\left(\frac{1}{3}\right)^{d_{f}} M(L) \Rightarrow\left(\frac{1}{3}\right)^{d_{f}}=\frac{1}{2} \quad \text { or } \quad d_{f}=\frac{\log 2}{\log 3} \approx 0.631
$$

Cantor set is related to chaos. In chaotic systems we have strange fractal attractors.
Logistic map: $x_{t+1}=\lambda x_{t}\left(1-x_{t}\right), \quad t=1,2,3 \ldots$

* Nonlinear dynamical equation

Model for the dynamics of biological populations:
$1^{\text {st }}$ term - exponential growth: $x_{t+1}=\lambda x_{t}$ (enough food, no diseases, no predators)
$2^{\text {nd }}$ term - decay $-\lambda x_{t}^{2}$
For $0 \leq \lambda \leq 4$ and $0<x_{0}<1$: follows $0<x_{t}<1$.
The dynamics of x_{t} (for large t) depends on λ.
For $\lambda<\lambda_{1}=3$: a single stable fixed point x_{t} approaches to same value for any x_{0}.
At $\lambda_{1}=3$: the fixed point bifurcates (two stable fixed points).
For large t the trajectories move periodically between two values with a period of $\Delta t=2$.
For example, for $\lambda=3.1$ after about 200 iterations x_{t} obtains the values and

For $\lambda=\lambda_{2}=1+\sqrt{6} \simeq 3.449$: each of the two fixed points bifurcates again to two new fixed points.

The trajectories have a period of $\Delta t=4$ along those 4 points.
For higher values of λ new bifurcations occur at λ_{n} with a period of $\Delta t=2^{n}$ between λ_{n} and λ_{n+1}.

For large n the difference between λ_{n+1} and λ_{n} becomes smaller according to:

$$
\lambda_{n+1}-\lambda_{n}=\left(\lambda_{n}-\lambda_{n-1}\right) / \delta
$$

with $\delta \cong 4.6692$ called Feigenbaum constant who found that δ is universal for all quadratic maps.

For $\lambda_{\infty} \cong 3.5699456 \ldots$ the period is infinite and x_{i} moves chaotically between the infinite fixed points.

The set of these infinite points is called strange attractor and represent a Cantor set with fractal dimension $d_{f} \cong 0.538$.

Above λ_{∞} more complex dynamics occurs which is beyond the scope of this course.

