Fractals

Fractal geometry describes Nature better than classical geometry. Two types of fractals: deterministic and random.

Deterministic fractals

Ideal fractals having self-similarity.

Every small part of the picture when magnified properly, is the same as the whole picture.

Self-similarity is a property, not a definition

To better understand fractals, we discuss several examples:

Koch curve

Building Koch curve

n=0

A section of unit length

n=1

Divide each section to 3 equal pieces and replace the middle one by two pieces like a tent

n=2

The same is done for all 4 sections

$n=\infty$

This is a mathematical fractal

In physics we continue until n_{max} . We have a fractal for length scales $1/3^{n_{\text{max}}} < x < 1$ Koch curve properties:

- (a) $\left(\frac{4}{3}\right)^n = Length \to \infty \quad for \quad n = \infty$.
- But contains in a finite space. No derivative.
- (b) Self-similarity scale invariance
- (c) No characteristic scale

Sierpinski gasket is perhaps the most popular fractal.

Generation of Sierpinski gasket

3D Sierpinski gasket

- (1) divide an equilateral triangle into 4 equal triangles
- (2) take out the central one
- (3) repeat this for every triangle

No translation symmetry Scale invariance symmetry

Internal perimeter: $\frac{3}{2} + \frac{9}{4} + \frac{27}{8} + \dots \rightarrow \infty$

Area:
$$S_0, \frac{3}{4}S_0, \left(\frac{3}{4}\right)^2 S_0 \dots \to 0$$

2D Sierpinski gasket

Sierpisnki gasket with lower cut off

$$n = 2$$

This is a fractal for $1 < x < 3^{n_{\text{max}}}$

Fractal dimension

How to quantify fractals?

Generalization of dimension to non-integer dimensions – fractal dimension (B.B. Mandelbrot, 1977)

Definition of dimension

- * Take a line section of length L, divide into two, we get: $M\left(\frac{1}{2}L\right) = \frac{1}{2}M(L)$
- * Take a square of length L, divide L by 2 we get: $M\left(\frac{1}{2}L\right) = \frac{1}{4}M(L) = \frac{1}{2^2}M(L)$
- * Take a qube of length L, divide L by 2 we get: $M\left(\frac{1}{2}L\right) = \frac{1}{8}M(L) = \frac{1}{2^3}M(L)$

In general

$$M(bL) = b^d M(L)$$

The exponent d defines the dimension of system

Solution: $M(L) = AL^d$ where A is a constant

Definition of fractal dimension $M(bL) = b^{d_f}M(L)$ generalization to non-integer dimension d_f

Solution: $M(L) = AL^{d_f}$

Example: Koch curve

$$M\left(\frac{1}{3}L\right) = \frac{1}{4}M(L) = \left(\frac{1}{3}\right)^{d_f}M(L) \Rightarrow \left(\frac{1}{3}\right)^{d_f} = \frac{1}{4} \quad or \quad d_f = \frac{\log 4}{\log 3} \approx 1.262$$

 d_f - non integer – between 1 and 2 dimensions. Koch curve is not a line (d=) but doesn't fill a plane (d=).

Example: Sierpinski gasket

$$M\left(\frac{1}{2}L\right) = \frac{1}{3}M(L) = \left(\frac{1}{2}\right)^{d_f}M(L) \Rightarrow \left(\frac{1}{2}\right)^{d_f} = \frac{1}{3} \quad or \quad d_f = \frac{\log 3}{\log 2} \approx 1.585$$

Non integer dimension between 1 and 2 dimensions.

Example: Sierpinski sponge:

$$M\left(\frac{1}{3}L\right) = \frac{1}{20}M(L) = \left(\frac{1}{3}\right)^{d_f}M(L) \Rightarrow \left(\frac{1}{3}\right)^{d_f} = \frac{1}{20} \quad or \quad d_f = \frac{\log 20}{\log 3} \approx 2.727$$

Here the fractal dimension is between 2 and 3.

Are there fractals with $d_f < 1$?

Example: Cantor set

A section of unit size. Divide into 3 equal sections and remove the central one. Repeat it for every left section. For $n \to \infty$ we get a fractal set of points.

$$M\left(\frac{1}{3}L\right) = \frac{1}{2}M(L) = \left(\frac{1}{3}\right)^{d_f}M(L) \Rightarrow \left(\frac{1}{3}\right)^{d_f} = \frac{1}{2} \quad or \quad d_f = \frac{\log 2}{\log 3} \approx 0.631$$

Relation between fractals and chaos

Cantor set is related to chaos. In chaotic systems we have strange fractal attractors.

Logistic map:
$$x_{t+1} = I x_t (1 - x_t), t = 1, 2, 3...$$

Nonlinear dynamical equation

Model for the dynamics of biological populations:

1st term – exponential growth: $x_{t+1} = \mathbf{I} x_t$ (enough food, no diseases, no predators) 2nd term – decay $-\mathbf{I} x_t^2$

For $0 \le I \le 4$ and $0 < x_0 < 1$: follows $0 < x_t < 1$.

The dynamics of x_t (for large t) depends on I.

For $I < I_1 = 3$: a single stable fixed point x_t approaches to same value for any x_0 .

At $I_1 = 3$: the fixed point bifurcates (two stable fixed points).

For large t the trajectories move periodically between two values with a period of $\Delta t = 2$

For $I = I_2 = 1 + \sqrt{6} \approx 3.449$: each of the two fixed points bifurcates again to two new fixed points.

The trajectories have a period of $\Delta t = 4$ along those 4 points.

For higher values of I new bifurcations occur at I_n with a period of $\Delta t = 2^n$ between I_n and I_{n+1} .

For large n the difference between I_{n+1} and I_n becomes smaller according to:

$$\boldsymbol{I}_{n+1} - \boldsymbol{I}_n = (\boldsymbol{I}_n - \boldsymbol{I}_{n-1})/\boldsymbol{d}$$

with $d \cong 4.6692$ called Feigenbaum constant who found that d is universal for all quadratic maps.

For $I_{\infty} \cong 3.5699456...$ the period is infinite and x_i moves chaotically between the infinite fixed points.

The set of these infinite points is called strange attractor and represent a Cantor set with fractal dimension $d_f \approx 0.538$.

Above I_{∞} more complex dynamics occurs which is beyond the scope of this course.