
Fractals 
 

Fractal geometry describes Nature better than classical geometry.  
Two types of fractals: deterministic and random. 
 
Deterministic fractals 
 
Ideal fractals having self-similarity.  
Every small part of the picture when magnified properly, is the same as the 
whole picture. 
 

Self-similarity is a property, not a definition 
 

To better understand fractals, we discuss several examples: 
 

Koch curve 



Building Koch curve 

This is a mathematical fractal 
In physics we continue until    maxn  .  We have a fractal for length scales  
Koch curve properties:  

(a) 
4
3

n

Length for n  = → ∞ = ∞ 
  .      But contains in a finite space. No derivative. 

(b) Self-similarity – scale invariance 
(c) No characteristic scale 
 

A section of unit length 
 
 
Divide each section to 3 equal pieces and  
replace the middle one by two pieces like a tent 
 
 
The same is done for all 4 sections 
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max1/ 3 1n x< <
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Sierpinski gasket is perhaps the most popular fractal. 
 
 
 
Generation of Sierpinski gasket 
 
 
 
 

(1) divide an equilateral triangle  
        into 4 equal triangles 
(2) take out the central one 
(3) repeat this for every triangle 
 
No translation symmetry 
Scale invariance symmetry 
 
Internal perimeter: 

 

 
Area: 
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Sierpisnki gasket with lower cut off 

0n =

1n =

2n =

1

This is a fractal for max1 3nx< <



 Fractal dimension 
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How to quantify fractals ? 
Generalization of dimension to non-integer dimensions – fractal dimension  
(B.B. Mandelbrot, 1977) 

Definition of dimension 

­ Take a line section of length L, divide into two, we get: 1 1
( )

2 2
M L M L  = 

 
 

­ Take a square of length L, divide L by 2 we get: 2

1 1 1
( ) ( )

2 4 2
M L M L M L  = = 

 
 

­ Take a qube of length L, divide L by 2 we get: 3

1 1 1
( ) ( )

2 8 2
M L M L M L  = = 
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In general  

( ) ( )dM bL b M L=  
The exponent d defines the dimension of system 

Solution: ( ) dM L AL= where A is a constant 
 



Definition of fractal dimension ( ) ( )fdM bL b M L=  
generalization to non-integer dimension fd  

Solution: ( ) fdM L AL=  

Example: Koch curve           

1 1 1 1 1 log 4
( ) ( ) 1.262

3 4 3 3 4 log 3

f fd d

fM L M L M L or d     = = ⇒ = = ≈     
     

 

fd  - non integer – between 1 and 2 dimensions. Koch curve is not a line  
(d= ) but doesn’t fill a plane (d= ). 

 

Example: Sierpinski gasket               
1 1 1 1 1 log 3

( ) ( ) 1.585
2 3 2 2 3 log 2

f fd d

fM L M L M L or d     = = ⇒ = = ≈     
     

 

Non integer dimension between 1 and 2 dimensions. 



Example: Sierpinski sponge:        

1 1 1 1 1 log 20
( ) ( ) 2.727

3 20 3 3 20 log 3

f fd d

fM L M L M L or d     = = ⇒ = = ≈     
     

 

  
Here the fractal dimension is between 2 and 3.  
 
Are there fractals with 1fd <  ? 
 
Example: Cantor set                                                                        A section of unit size.  

  Divide into 3 equal sections  
  and remove the central one.  
  Repeat it for every left section.  
  For              we get a fractal set  

    of points. 
 

1 1 1 1 1 log 2
( ) ( ) 0.631

3 2 3 3 2 log3

f fd d

fM L M L M L or d     = = ⇒ = = ≈     
     

 

 
 

n → ∞



Relation between fractals and chaos 
 

Cantor set is related to chaos. In chaotic systems we have strange fractal attractors. 
 
Logistic map: 1 (1 ), 1,2,3t t tx x x tλ+ = − = …   
 

­ Nonlinear dynamical equation 
 
Model for the dynamics of biological populations: 
 
1st term – exponential growth: 1t tx xλ+ =  (enough food, no diseases, no predators) 
2nd term – decay 2

txλ−  
 
For 0 4λ≤ ≤  and 00 1x< < : follows 0 1tx< < .  
The dynamics of tx  (for large t  ) depends on  λ . 
For 1 3λ λ< = : a single stable fixed point tx  approaches to same value for any 0x .  
At 1 3λ = : the fixed point bifurcates (two stable fixed points).  
For large  t  the trajectories move periodically between two values with a period of 

2t∆ = .  
For example, for 3.1λ =  after about 200 iterations tx  obtains the values . … 
and . … 



For 2 1 6 3.449λ λ= = + ; : each of the two fixed points bifurcates again to two new 
fixed points.  
 
The trajectories have a period of 4t∆ =  along those 4 points. 
 
For higher values of λ  new bifurcations occur at nλ  with a period of 2nt∆ =  between 

nλ  and 1nλ + . 

For large n the difference between 1nλ +  and nλ  becomes smaller according to: 
1 1( ) /n n n nλ λ λ λ δ+ −− = −  

with 4.6692δ ≅  called Feigenbaum constant who found that δ  is universal for all 
quadratic maps. 
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For 3.5699456λ∞ ≅ … the period is infinite and ix  moves chaotically between 
the infinite fixed points.  
 
The set of these infinite points is called strange attractor and represent a Cantor 
set with fractal dimension 0.538fd ≅ .  
 
Above λ∞  more complex dynamics occurs which is beyond the scope of this 
course. 


