Box dimension
Different ways to define fractal dimensions usually lead to the same result.

Important: different ways usually lead to different methods to calculate the fractal
dimension, in particular, in random fractals.

We define the box dimension:

Given a set of pointsin d-dimensions.
Calculate the number of boxes of linear size€ needed to cover the set.
If N(e) isthe number of boxes of size€ and there exists the relation
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IS the fractal dimension of the set.



Box dimension

For aline section: N(e):é —& P d =1
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For a cube: N(e):g €0 b d, =3

That isfor integer dimensions d; =d as expected !

Triadic Cantor set
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More fractal dimensions

The common fractal dimension d; cannot fully characterize the fractal
b
Given fractal I fractal dimension

More fractal dimensions are needed!
How many dimensions are needed — no answer today

Shortest path (chemical distance) dimension -d,;y,
The fractal dimension of the shortest path defined by I (bL) = bl (L)
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Shortest path dimension - d_. -

For Koch curve: the shortest path isthe line itsalf
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Chemical dimension - d, - “how the mass scales with the shortest path”

Defined by: M(bl)=b*™M (), M()=CI®
For the modified Koch curve
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|s there arelation between d;, d, and d¢ ?
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More characteristics of fractals include: backbone, external perimeter, red bonds, etc.



3. Self-affinity
Self-similarity or scale invariance is an isotropic property, the change of scale is the
same in every direction in space.
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Example: Sierpinski gasket

Self-affinity — include anisotropic symmetry magnifying x in different scale than y.
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Here we see that to get the same picture we need to magnify the x axis by
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Generalization of sdlf-similar fractals: M (PL) =b"M(L)

Example:
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3.1 Fractal dimension — salf-affine structures

Here we need to define two fractal dimensions
M (aL,,bL,) =a“ M (L,,L,)

=b"" M (L,,L,)
Example:



Example: self-affine Sierpinski carpet

A 1 06 1 aé.o
M —L, L,===M(L,,L = M(L,L
gzn i3 (Ly,Ly) = Cas (Ly,Ly)
oo

822 (Lx’Ly)

log3

di =1, di = log2



Salf affine fractals
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Here also
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Generalization:
Start with a square of unit size:
@ Divide x axisto bl andyaxistobz
(b)  Weget rectangulars of size (1/ bl), (1/ bz) y —_r
(¢ Number of rectangularsb1, bz T~
(d) Keep n rectangulars and remove b1, bz = N of them (above: n:3,b2 =2,b1 =3)
(E) To each rectangular left full, apply the same rule. e —
The fractal dimension: b1:5
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3.2 Local dimension — box dimension
Alternative definition of dimension is self-affine using box dimension
Example:

Chose a square box of linear size 11 L

3’3
How many boxes are needed to cover the fractal?
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ae}t_iz - box area
&35
. 3%y
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-k ya- K
number of boxes N(e) = n* o, ’:322
(6:")
R kInE InE
Thelocal box dimension: N(e)=e’ %, ! =INN® __ 5 __ b

Int kinb, Inb
e



Self affine curves —single valued
Example:

Alternative definition of dimension:;
Denote L — linear scale in x-direction A
Denote W —linear scale in y-direction hoo

Dimensiona defined by W(bL) =b*W(L) -«

Thedimensiona isalso called roughness exponent
For the above fractal
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Random Fractals

Fractals do not have to be deterministic

One can generate random fractals

Instead of always removing the central square, we remove randomly one of
the 9 squares

Random Sierpinski carpet Deterministic Sierpinski carpet

The fractal dimension of the random Sierpi nski carpet is the same as the

aa o_1 o log8

deterministic:M83L_ SM(L)= 3 M(L), d, = log3 @1.893

The self-similarity is not exact — valid statistically



Random Fractals — Fractal Dimension
Methods: (a) sand box; (b) box counting; (c) correlations.

4.1 Sand Box method
Choose a site on the fractal — origin
plot circles of several radiuses I < R,
R, ~ radius of the fractal

count the number of sitesinsider

repeat the measurements for several origins
average over al resultsfor each” - M (r)
plot M(r) vsT onlog-log plot
theslopeisd; of the fractal

M(r)=Ardf, logM (r) =log A+d; logr
This method is analogous to the determination of d; in deterministic fractals.

How themass M scales with the linear metric” .



4.2 Box counting method

Draw alattice of squares of different sizese
For each € count the number of boxes N(e)

needed to cover the fracta

N(e) increases with decreasinge

-1~ -;- i |- r1711 Thefracta dimension isobtained from

N(e) = pe @

logN(e) =log A- d; loge

Plotting N(e) vs€ onlog-log graph —
the dlopeis- d;



4.3 Correlation method

Measurements of the density-density autocorrelation function
C(r)=(r (ror (r¢+r)>r¢:\%é r(rQr (réer)
re

il if atr®thereisasiteof the fractal

r(r=j

i O if atr@hereisno site

ThevolumeV =g r (r9.

re¢
C(r) isthe average density at distance’ from asite on afractal.

For isotropic fractals we expect C(r) =C(r) = Ar' ¢,
The mass within aradius R is:
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Thus, from measuring® one can determine d; .



4.4 Experimental method

Scattering experiments like x-rays, neutron scattering etc. with different
wave vectorsis proportional to the structure factor.

The structure factor is the Fourier transform of the density-density
correlation function.

For fractals — the structure factor is
S(a) =S(q) =q

g= I—si nJ isthe wave vector.

Since physical fractals have lower and upper bounds Iength scales
(I _ and I +)

4p 4p

It follows that only for I—sina <( <|—sinJ , we obtaind,

+

Measurements of S(q) yieldsd,
Example: polymers.



