
Box dimension 
 

Different ways to define fractal dimensions usually lead to the same result. 
 
Important: different ways usually lead to different methods to calculate the fractal  
dimension, in particular, in random fractals. 
 
We define the box dimension: 
 

­ Given a set of points in d-dimensions. 
­ Calculate the number of boxes of linear size ε  needed to cover the set. 
­ If ( )N ε  is the number of boxes of size ε  and there exists the relation 
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    is the fractal dimension of the set. 



Box dimension 
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That is for integer dimensions fd d=  as expected ! 
 

Triadic Cantor set 
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The number is: ( ) 2kN ε =  
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More fractal dimensions 
 

­ The common fractal dimension fd  cannot fully characterize the fractal 

­ Given fractal 
⇒
⇐

 fractal dimension 

­ More fractal dimensions are needed! 
­ How many dimensions are needed – no answer today 

 
Shortest path (chemical distance) dimension - mind  

­ The fractal dimension of the shortest path defined by min( ) ( )dl bL b l L=  

Example: modified Koch curve      
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Shortest path dimension - mind  
 

For Koch curve: the shortest path is the line itself 
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Chemical dimension - ld  - “how the mass scales with the shortest path” 
 
Defined by:  ( ) ( )ldM bl b M l= ,       ( ) ldM l Cl=  
For the modified Koch curve   
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Is there a relation between min,ld d  and fd  ? 
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More characteristics of fractals include: backbone, external perimeter, red bonds, etc. 
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3. Self-affinity 
Self-similarity or scale invariance is an isotropic property, the change of scale is the 
same in every direction in space. 

Example: Sierpinski gasket  
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Self-affinity – include anisotropic symmetry magnifying x in different scale than y. 
 
Example:  

 
 
 

­ Here we see that to get the same picture we need to magnify the x axis by 
4 and y axis by 2, 4 , 2x x y y→ →  

1 1 1
, ( , )

4 2 4x y x yM L L M L L  = 
 

 

Generalization of self-similar fractals: ( ) ( )fdM bL b M L=  

n=0 n=1 n=0 n=1

n=2 n=3



3.1 Fractal dimension – self-affine structures 
 

Here we need to define two fractal dimensions 
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Example: self-affine Sierpinski carpet 
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Self affine fractals 

            
Here also  
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Generalization: 
Start with a square of unit size: 

(a) Divide x axis to 1b  and y axis to 2b  

(b) We get rectangulars of size 1 2(1/ ) (1/ )b b×  

(c) Number of rectangulars 1 2b b×  

(d) Keep n rectangulars and remove 1 2b b n× −  of them (above: n=3, 2b =2, 1b =3) 

(e) To each rectangular left full, apply the same rule. 
The fractal dimension: 
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3.2 Local dimension – box dimension 
Alternative definition of dimension is self-affine using box dimension 
Example:  

­ Chose a square box of linear size 2
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­ How many boxes are needed to cover the fractal? 
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 boxes. More general: if we divide to 

1 2b b×  rectangulars and leave n of them full, we obtain a box of size 1
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Self affine curves – single valued 
Example:  
 
 

Alternative definition of dimension: 
Denote L – linear scale in x-direction 
Denote W – linear scale in y-direction 
 
Dimension α  defined by ( ) ( )W bL b W Lα=  
The dimension α  is also called roughness exponent 
For the above fractal 
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For the fractal  
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Random Fractals 
 

­ Fractals do not have to be deterministic 
­ One can generate random fractals 
­ Instead of always removing the central square, we remove randomly one of 

the 9 squares 
 
      Random Sierpinski carpet     Deterministic Sierpinski carpet 
 

                                                          
 

­ The fractal dimension of the random Sierpinski carpet is the same as the 

deterministic: 
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­ The self-similarity is not exact – valid statistically 



Random Fractals – Fractal Dimension 
 

Methods: (a) sand box; (b) box counting; (c) correlations. 
 

4.1 Sand Box method 
­ Choose a site on the fractal – origin 
­ plot circles of several radiuses maxr R=  
­ maxR ∼  radius of the fractal 
­ count the number of sites inside  r  
­ repeat the measurements for several origins 
­ average over all results for each  r  - ( )M r  
­ plot ( )M r  vs  r  on log-log plot 
­ the slope is fd  of the fractal 
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This method is analogous to the determination of fd  in deterministic fractals. 
 
How the mass M  scales with the linear metric  r . 

 



4.2 Box counting method 
 

­ Draw a lattice of squares of different sizes  ε  
­ For each  ε  count the number of boxes  ( )N ε   

needed to cover the fractal 
­ ( )N ε  increases with decreasing  ε  

 
 
 

   The fractal dimension is obtained from 
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­ Plotting ( )N ε  vs  ε  on log-log graph –  

the slope is fd−  
 



4.3 Correlation method 
 

Measurements of the density-density autocorrelation function 
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( )rC  is the average density at distance r  from a site on a fractal. 
 
For isotropic fractals we expect ( ) ( )rC C r Ar α−= = . 
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Thus, from measuring α  one can determine fd . 
 



4.4 Experimental method 
 

­ Scattering experiments like x-rays, neutron scattering etc. with different 
wave vectors is proportional to the structure factor.  

­ The structure factor is the Fourier transform of the density-density 
correlation function. 

 

For fractals – the structure factor is  
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Since physical fractals have lower and upper bounds length scales  
(λ−  and λ+ ) 
 

It follows that only for 
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­ Measurements of ( )S q  yields fd  
Example: polymers. 


