Box dimension

Different ways to define fractal dimensions usually lead to the same result.
Important: different ways usually lead to different methods to calculate the fractal dimension, in particular, in random fractals.

We define the box dimension:

* Given a set of points in d-dimensions.
* Calculate the number of boxes of linear size \mathcal{E} needed to cover the set.
* If $N(\varepsilon)$ is the number of boxes of $\operatorname{size}^{\varepsilon}$ and there exists the relation

$$
N(\varepsilon)=\frac{A}{\varepsilon^{d_{f}}} \quad(\text { for } \varepsilon \rightarrow 0)
$$

*Then $d_{f}=\frac{\log N(\varepsilon)}{\log \frac{1}{\varepsilon}} \quad($ for $\varepsilon \rightarrow 0)$
is the fractal dimension of the set.

Box dimension

For a line section: $N(\varepsilon)=\frac{A}{\varepsilon}$

$$
\Rightarrow d_{f}=1
$$

For a square: $N(\varepsilon)=\frac{A}{\varepsilon^{2}}$

$$
\Rightarrow d_{f}=2
$$

For a cube: $N(\varepsilon)=\frac{A}{\varepsilon^{3}}$

$$
\Rightarrow d_{f}=3
$$

That is for integer dimensions $d_{f}=d$ as expected !

Triadic Cantor set

More fractal dimensions

* The common fractal dimension d_{f} cannot fully characterize the fractal
* Given fractal \nRightarrow fractal dimension
* More fractal dimensions are needed!
* How many dimensions are needed - no answer today

Shortest path (chemical distance) dimension $-d_{\text {min }}$

* The fractal dimension of the shortest path defined by $l(b L)=b^{d_{\text {min }}} l(L)$

Example: modified Koch curve

$$
\begin{aligned}
& d_{f}: M\left(\frac{1}{4} L\right)=\frac{1}{7} M(L)=\left(\frac{1}{4}\right)^{d_{f}} M(L) \\
& d_{f}=\frac{\log 7}{\log 4} \cong 1.404, \quad M(L)=A L^{d_{f}}
\end{aligned}
$$

$\mathrm{n}=1$

$$
\mathrm{n}=2
$$

$$
d_{\min }: l\left(\frac{1}{4} L\right)=\frac{1}{5} l(L)=\left(\frac{1}{4}\right)^{d_{\min }} l(L)
$$

$$
d_{\min }=\frac{\log 5}{\log 4} \cong 1.161, \quad l=B L^{d_{\min }}
$$

For Koch curve: the shortest path is the line itself

$$
\begin{aligned}
& l\left(\frac{1}{3} L\right)=\frac{1}{4} l(L)=\left(\frac{1}{3}\right)^{d_{f}} l(L) \\
& d_{f}=\frac{\log 4}{\log 3}
\end{aligned}
$$

Chemical dimension - d_{l} - "how the mass scales with the shortest path"
Defined by: $M(b l)=b^{d_{l}} M(l), \quad M(l)=C l^{d_{l}}$
For the modified Koch curve

$$
\begin{aligned}
& M\left(\frac{1}{5} l\right)=\frac{1}{7} M(l)=\left(\frac{1}{5}\right)^{d_{l}} M(l) \\
& d_{l}=\frac{\log 7}{\log 5} \cong 1.209, \quad M(l)=C l^{d_{l}}
\end{aligned}
$$

Is there a relation between $d_{l}, d_{\text {min }}$ and d_{f} ?

$$
\begin{aligned}
M(L) & =A L^{d_{f}} \quad \text { from } l=B L^{d_{\min }} \quad \text { follows } \quad L \sim l^{1 / d_{\min }} \\
& =A^{\prime} l_{f}^{d_{f} / d_{\min }} \\
& =C l^{d_{l}} \Rightarrow d_{l}=d_{f} / d_{\min }
\end{aligned}
$$

More characteristics of fractals include: backbone, external perimeter, red bonds, etc.

Self-similarity or scale invariance is an isotropic property, the change of scale is the same in every direction in space.

Example: Sierpinski gasket
$\overrightarrow{x \rightarrow 2 x}$

$$
y \rightarrow 2 y
$$

Self-affinity - include anisotropic symmetry magnifying x in different scale than y .
Example:

$\mathrm{n}=2 \quad \mathrm{n}=3$

* Here we see that to get the same picture we need to magnify the x axis by 4 and y axis by $2, x \rightarrow 4 x, y \rightarrow 2 y$

$$
M\left(\frac{1}{4} L_{x}, \frac{1}{2} L_{y}\right)=\frac{1}{4} M\left(L_{x}, L_{y}\right)
$$

Generalization of self-similar fractals: $M(b L)=b^{d_{f}} M(L)$

3.1 Fractal dimension - self-affine structures

Here we need to define two fractal dimensions

$$
\begin{aligned}
M\left(a L_{x}, b L_{y}\right) & =a^{d_{f}^{x}} M\left(L_{x}, L_{y}\right) \\
& =b^{d_{f}^{y}} M\left(L_{x}, L_{y}\right)
\end{aligned}
$$

Example:

$$
\begin{gathered}
M\left(\frac{1}{4} L_{x}, \frac{1}{2} L_{y}\right)=\frac{1}{4} M\left(L_{x}, L_{y}\right)=\left(\frac{1}{4}\right)^{d_{f}^{x}} M\left(L_{x}, L_{y}\right) \\
M\left(\frac{1}{4} L_{x}, \frac{1}{2} L_{y}\right)=\frac{1}{4} M\left(L_{x}, L_{y}\right)=\left(\frac{1}{2}\right)^{d_{f}^{y}} M\left(L_{x}, L_{y}\right) \\
\left(\frac{1}{4}\right)^{d_{f}^{x}}=\frac{1}{4} \Rightarrow d_{f}^{x}=1 \\
\left(\frac{1}{2}\right)^{d_{f}^{y}}=\frac{1}{4} \Rightarrow d_{f}^{y}=2
\end{gathered}
$$

Example: self-affine Sierpinski carpet

Here also

$$
\begin{aligned}
M\left(\frac{1}{3} L_{x}, \frac{1}{2} L_{y}\right)=\frac{1}{3} M\left(L_{x}, L_{y}\right) & =\left(\frac{1}{3}\right)^{d_{f}^{x}} M\left(L_{x}, L_{y}\right) \\
& =\left(\frac{1}{2}\right)^{d_{f}^{y}} M\left(L_{x}, L_{y}\right), \quad d_{f}^{x}=1, \quad d_{f}^{y}=\frac{\log 3}{\log 2}
\end{aligned}
$$

Generalization:

Start with a square of unit size:
(a) Divide x axis to b_{1} and y axis to b_{2}
(b) We get rectangulars of size $\left(1 / b_{1}\right) \times\left(1 / b_{2}\right)$
(c) Number of rectangulars $b_{1} \times b_{2}$
(d) Keep n rectangulars and remove $b_{1} \times b_{2}-n$ of them (above: $\mathrm{n}=3, b_{2}=2, b_{1}=3$)
(e) To each rectangular left full, apply the same rule.

The fractal dimension:

$$
\begin{aligned}
M\left(\frac{1}{b_{1}} L_{x}, \frac{1}{b_{2}} L_{y}\right)=\frac{1}{n} M\left(L_{x}, L_{y}\right) & =\left(\frac{1}{b_{1}}\right)^{d_{f}^{x}} M\left(L_{x}, L_{y}\right) \\
& =\left(\frac{1}{b_{2}}\right)^{d_{f}^{y}} M\left(L_{x}, L_{y}\right), \quad d_{f}^{x}=\frac{\log b_{1}}{\log n}, \quad d_{f}^{y}=\frac{\log b_{2}}{\log n}
\end{aligned}
$$

Alternative definition of dimension is self-affine using box dimension Example:

* Chose a square box of linear size $\frac{1}{3}, \frac{1}{3^{2}}, \ldots \frac{1}{3^{n}}$
* How many boxes are needed to cover the fractal?

For size $\frac{1}{3}$ we need

$$
\frac{3 \cdot \frac{1}{3} \cdot \frac{1}{2}}{\left(\frac{1}{3}\right)^{2}}=\frac{\text { rectangular area } \times \text { number of rectangulars }}{\text { box area }}
$$

In general for $\frac{1}{3^{k}}$ we need $N(\varepsilon)=\frac{3^{k} \cdot \frac{1}{3^{k}} \cdot \frac{1}{2^{k}}}{\left(\frac{1}{3^{k}}\right)^{2}}$ boxes. More general: if we divide to
$b_{1} \times b_{2}$ rectangulars and leave n of them full, we obtain a box of $\operatorname{size} \varepsilon=b_{1}^{-k}$ and the number of boxes $N(\varepsilon)=n^{k} \frac{b_{1}^{-k} \cdot b_{2}^{-k}}{\left(b_{1}^{-k}\right)^{2}}$
The local box dimension: $N(\varepsilon)=\varepsilon^{-d_{f}^{l}}, \quad d_{f}^{l}=\frac{\ln N(\varepsilon)}{\ln \frac{1}{\varepsilon}}=\frac{k \ln \frac{n b_{1}}{b_{2}}}{k \ln b_{1}}=\frac{\ln \frac{n b_{1}}{b_{1}}}{\ln b_{1}}$

Example:

Alternative definition of dimension:
Denote L - linear scale in x -direction
Denote W - linear scale in y-direction
Dimension α defined by $W(b L)=b^{\alpha} W(L)$

The dimension α is also called roughness exponent
For the above fractal

$$
\begin{aligned}
& W\left(\frac{1}{4} L\right)=\frac{1}{2} W(L)=\left(\frac{1}{4}\right)^{\alpha} W(L) \\
& \Rightarrow \alpha=\frac{\log 2}{\log 4}=\frac{1}{2}
\end{aligned}
$$

For the fractal

$$
\begin{aligned}
& W\left(\frac{1}{5} L\right)=\frac{1}{3} W(L)=\left(\frac{1}{5}\right)^{\alpha} W(L) \\
& \alpha=\frac{\log 3}{\log 5} \cong 0.683
\end{aligned}
$$

Random Fractals

* Fractals do not have to be deterministic
* One can generate random fractals
* Instead of always removing the central square, we remove randomly one of the 9 squares

Random Sierpinski carpet
Deterministic Sierpinski carpet

* The fractal dimension of the random Sierpinski carpet is the same as the deterministic: $M\left(\frac{1}{3} L\right)=\frac{1}{8} M(L)=\left(\frac{1}{3}\right)^{d_{f}} M(L), \quad d_{f}=\frac{\log 8}{\log 3} \cong 1.893$
* The self-similarity is not exact - valid statistically

Random Fractals - Fractal Dimension

Methods: (a) sand box; (b) box counting; (c) correlations.

4.1 Sand Box method

* Choose a site on the fractal - origin
* plot circles of several radiuses $r \ll R_{\max }$
* $R_{\text {max }} \sim$ radius of the fractal
* count the number of sites inside r
* repeat the measurements for several origins
* average over all results for each $r-M(r)$
* plot $M(r)$ vs r on log-log plot
* the slope is d_{f} of the fractal

$$
M(r)=A r^{d_{f}}, \quad \log M(r)=\log A+d_{f} \log r
$$

This method is analogous to the determination of d_{f} in deterministic fractals.
How the mass M scales with the linear metric ${ }^{r}$.

4.2 Box counting method

* Draw a lattice of squares of different sizes ε

* For each ε count the number of boxes $N(\varepsilon)$ needed to cover the fractal
* $N(\varepsilon)$ increases with decreasing ε

The fractal dimension is obtained from

$$
\begin{aligned}
& N(\varepsilon)=A \varepsilon^{-d_{f}} \\
& \log N(\varepsilon)=\log A-d_{f} \log \varepsilon
\end{aligned}
$$

* Plotting $N(\varepsilon)$ vs ${ }^{\varepsilon}$ on log-log graph the slope is $-d_{f}$

4.3 Correlation method

Measurements of the density-density autocorrelation function

$$
\begin{aligned}
& C(\mathbf{r})=\left\langle\rho\left(\mathbf{r}^{\prime}\right) \rho\left(\mathbf{r}^{\prime}+\mathbf{r}\right)\right\rangle_{\mathbf{r}^{\prime}}=\frac{1}{V} \sum_{\mathbf{r}^{\prime}} \rho\left(\mathbf{r}^{\prime}\right) \rho\left(\mathbf{r}^{\prime}+\mathbf{r}\right) \\
& \rho\left(\mathbf{r}^{\prime}\right)=\left\{\begin{array}{c}
1 \text { if at } \mathbf{r}^{\prime} \text { there is a site of the fractal } \\
0 \text { if at } \mathbf{r}^{\prime} \text { there is no site }
\end{array}\right.
\end{aligned}
$$

The volume $V=\sum_{\mathbf{r}^{\prime}} \rho\left(\mathbf{r}^{\prime}\right)$.
$C(\mathbf{r})$ is the average density at distance \mathbf{r} from a site on a fractal.
For isotropic fractals we expect $C(\mathbf{r})=C(r)=A r^{-\alpha}$. The mass within a radius R is:

$$
\begin{aligned}
& M(R)=\int_{0}^{R} C(r) d^{d} r=R^{-\alpha+d} \equiv R^{d_{f}} \\
& \Rightarrow \alpha=d-d_{f}
\end{aligned}
$$

Thus, from measuring ${ }^{\alpha}$ one can determine d_{f}.

4.4 Experimental method

* Scattering experiments like x-rays, neutron scattering etc. with different wave vectors is proportional to the structure factor.
* The structure factor is the Fourier transform of the density-density correlation function.

For fractals - the structure factor is

$$
S(\mathbf{q})=S(q)=q^{-d_{f}}
$$

$q=\frac{4 \pi}{\lambda} \sin \vartheta$ is the wave vector.
Since physical fractals have lower and upper bounds length scales (λ_{-}and λ_{+})

It follows that only for $\frac{4 \pi}{\lambda_{+}} \sin \alpha<q<\frac{4 \pi}{\lambda_{-}} \sin \vartheta$, we obtain d_{f}

* Measurements of $S(q)$ yields d_{f} Example: polymers.

