Fractals in Nature
Coastline

What is the length of the coastline for Norway ?

When measuring with a smaller scale we get
alonger coastline
Thus, no meaning for the length!
For ascale d , wecount steps N(d)
along the coast
Thetotal lengthis | =N(d)>d

Same for Koch curve

For linear scale of size 9 we get alength
L=N()>d =1x9=9
For scae3: L=N(d)>d =4x3=12

Forscalel: L=N(d)>d =16X.=16
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Coastline

From box dimension: the number of boxes needed to cover the coastline
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How many boxes of size€ are needed
to cover the coast - N(e)
Richardson (1961) found that the length of coast

depends on ruler and suggested the scaling law
v fractd
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Random fractals
In nature there exist many examples of random fractals.

Examples:

Coast lines Rivers Mountains

Clouds Lightening Neurons



Galaxies

From 1900 astronomers found clusters of stars and galaxies

Novel results (Pietronero, 1992) show fractal features for the galaxies

For random distribution of stars or galaxies the fractal dimension would
bed; =3.

Observations for length scales up to 20 Mpc (1pc® 3.0840° km) yield
d, @.23+0.04
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Fractal aspects of the Swiss landscape
Giovanni Dietler and Yi-Cheng Zhang

PhysicaA 191 (1992) 213-219
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Percolation
v'"Model for disordered media v'Each site is occupied with probability

7 7 p and empty with probability 1-p
s B
\

7

p=0-2
v'For low p —small clusters
v'For large p — big clusters — Infinite cluster
v At p=p, atransition from small clustersto infinite clusters
v"Occupied and empty sites can represent different physical properties, e.g.
occupied — conductors
empty — isolators
v'Current can flow only on conductors
below p, — isolator
above p, — conductor
v'p,—called “critical concentration” — above which current cannot flow
v'p, — called also * percol ation threshold”

g | solator-conductor phase transition



Percolation

More examples
v'Occupied sites— superconductors G N
Empty sites - conductors v Superconductor — conductor phase transition (at p,)

v'Occupied sites— magnets i

7

Empty sites - paramagnets | Magnet - paramagnet phase transition (at p,)

v'Occupied sites— working computers i L
Empty sites — damaged computers % Internet network phase transition
v"Comparison with thermal phase transition
solid-liquid
critical temperature T,
below T, — order (infinite cluster)

il ? mi=Sar i above T, — disorder (small clusters)
l !

Bond Percolation

A T 1 vBonds are qcc_:upied randomly with probability p
| HH ~  YAtp, aninfinite cluster of bonds appears
J—WL v"Model for random resistor network: bonds are cut randomly




Bond Percolation - Examples

Chemistry - polymerization
v'Branching molecules can perform larger molecules by
4 activating more and more bonds
v"Assume that probability to activate abond is p
below p, —small macromolecules
above p, — large macromolecules (system size)
v'Called sol-gel transition

Gel —infinite cluster — elastic (like food gels) — above p,
Sol —viscous fluid — below p,

v'Example — boiled egg
heating — activates more bonds between molecules

Biology — epidemic spreading

v Epidemic starts with a single sick person that can infect its
neighbors with probability p (per unit time)

v"Neighbors can infect their neighbors

vIf pissmall the epidemic stops. Above p, the epidemic spreads to
large populations

v'"Model aso for fire spreading in aforest



v"Percolation aspects are important in many systems in Nature: amorphous and porous
materials (e.g. rocks), branched polymers, fragmentation, galaxies structure, earthquakes,
anomal ous properties of water, ssimulations of oil recovery from porous rocks.

Percolation Threshold

v'Site and bond percolation can be defined for all |attices and for all d
v'In genera a bond has more neighbors than a site
Example: sguare lattice site  has 4 neighbors
bond has 6 neighbors
Thus, big clusters of bonds are easier generated than for sites

b p, forbonds < p, for sites for the same lattice

v'Example: p,=1/2  for bond percolation

p, =0.593 for site percolation g on square lattice



Per colation L attice
bond - p. site- p,
25 nl%8 < Triangle
p A 0.5927 Square
0.2488 0.3116 Cubic

Continuum Percolation

v"Natural example — continuum percolation

v"Two components not on alattice
v Example: take a conducting plate

make circular holes randomly

v'Called: Swiss Cheese Model

v'P_=0.312+0.005 for d=2; p.=0.034 for d=3
above p, — conductor
below p, — insulator

v"Modd for porous materials




Historical remarks

v'First work on percolation — Flory +Stockmayer (1941-1943)
studied gelation or polymerization

v"Name percolation — Broadbent and Hammersley (1957)
studied flow of liquid in porous media
presented several concepts in percolation

v"The developments in phase transition (1960’ s), series expansion (Domb),
renormalization group, scaling theory and universality by Wilson (Nobel Prize),
Fisher and Kadanoff — helped to develop percolation theory and understand the
percolation as acritical phenomena

v'Fractal concept (Mandelbrot, 1977) — new tools (fractal geometry) together with
computer development P pushed forward the percolation theory

v Still — many open questions exist !



