Percolation – Phase Transition

- Example of a geometrical phase transition
- $\checkmark p_c$ critical threshold separates two phases:
 - (1) ordered $p > p_c$ infinite cluster
 - (2) disordered $p < p_c finite clusters$

✓ Analogy to

{ thermodynamic phase transition
 magnetic phase transition

Ferromagnetic – paramagnetic phase transition

- $T < T_c$ spontaneous magnetization M>0 ferromagnetic phase integration between spins \Rightarrow order
- $T>T_c$ no magnetization M=0 paramagnetic phase termal energy \Rightarrow disorder
- M called "order parameter" scales as $M \sim (T_c T)^b$
- c magnetic fluctuations susceptibility

$$\boldsymbol{c} \sim \left\langle (\boldsymbol{M} - \boldsymbol{\overline{M}})^2 \right\rangle^{1/2} \sim \left| \boldsymbol{T} - \boldsymbol{T}_c \right|^{-\boldsymbol{g}}$$

x - correlation length (size of ordered clusters)

$$\boldsymbol{X} \sim \left| T_c - T \right|^{-1}$$

b,**g**,**n** - called critical exponents

Percolation - critical exponent

- ✓ p same role as T in thermal phase transitions ✓ p_∞ - probability that a site (bond) belongs to ∞ cluster order parameter $p_{∞} \propto (p - p_c)^b$ - similar to magnetization
- $\checkmark x$ correlation length mean distance between two sites on the same cluster

$$\boldsymbol{x} \propto |\boldsymbol{p} - \boldsymbol{p}_c|^{-\boldsymbol{n}}$$

✓ The average size of finite clusters $S \sim |p - p_c|^{-g}$ (analogous to susceptibility)

 ✓ b and g are the same for p>p_c and p<p_c
 ✓ For X and S take into account all finite clusters
 ✓ b,n and g called critical exponents ⇒ describe critical behavior near the transition
 ✓ The exponents are universal
 ✓ Universality – property of second order phase transition (order parameter →0 continuously) All magnets in d=3 have same b independent on the lattice and type of interactions

 $\checkmark T_c$ – depends on details (interactions, lattice) – same for p_c

Percolation	<i>d</i> =2	d=3	$d \ge 6$
Order parameter P_{∞} : b	5/36	0.417 ± 0.003	1
Correlation length \mathbf{x} :v	4/3	0.875 ± 0.008	1/2
Mean cluster size S : g	43/18	1.795±0.005	1
Magnetism	<i>d</i> =2	<i>d</i> =3	$d \ge 6$
Magnetism Order parameter m: b	d=2 1/8	d=3 0.32	<i>d</i> ≥6 1/2
Magnetism Order parameter m: b Correlation length x:v	d=2 1/8 1	d=3 0.32 0.63	<i>d</i> ≥6 1/2 1/2

Percolation – Geometrical Properties

- > A percolation cluster can be characterized by fractal geometry
- \triangleright We can see in the infinite cluster, at p_c, holes in all scales like Sierpinski gasket
- > The cluster is self-similar (from pixel size to system size)

- > The square in left top is magnified in right top
 - \Rightarrow magnified in left bottom
 - \Rightarrow magnified in right bottom
- The difficulty to easily realize the order is a sign of self-similarity

Percolation – fractal dimension

> The fractal dimension d_f describes how the mass M(r) scales within a circle of radius r

 $M(r) \sim Ar^{d_f}$

> The center of the circle on a site

> M(r) is averaged of many different circles

> Size of finite clusters (=holes) is ξ - correlation length

At $p \to p_c$, $\mathbf{x} \to \infty$, and we have holes of all scales

> Above p_c , ξ is finite and self-similarity exists only for scales smaller than ξ

> Above ξ - the cluster is homogeneous!

> Demonstration of self-similarity for scales below ξ and homogeneous above ξ

Percolation – Fractal Dimension

➤ The probability that a site belongs to ∞-cluster is the ratio between the number of sites on the ∞-cluster (r^{d_f}) and the total number of sites (r^d)

$$\Rightarrow P_{\infty} \approx \frac{\mathbf{x}^{d_f}}{\mathbf{x}^d} \Rightarrow (p - p_c)^{\mathbf{b}} \approx \frac{(p - p_c)^{-\mathbf{n}d_f}}{(p - p_c)^{-\mathbf{n}d}}$$
$$\Rightarrow \mathbf{b} = -\mathbf{n}d_f + \mathbf{n}d \quad \Rightarrow$$
$$d_f = d - \frac{\mathbf{b}}{\mathbf{n}}$$

Fractal Dimension

$$d_f = d - \frac{\boldsymbol{b}}{\boldsymbol{n}}$$

For
$$d = 2$$
: $\mathbf{b} = 5/36$, $\mathbf{n} = 4/3 \implies d_f = 2 - \frac{5 \cdot 3}{36 \cdot 4} = 2 - \frac{5}{48} = \frac{91}{48} \approx 1.896$
For $d = 3$: $\mathbf{b} = 0.42$, $\mathbf{n} = 0.88 \implies d_f = 3 - \frac{0.42}{0.88} \approx 2.55$
For $d \ge 6$: $\mathbf{b} = 1$, $\mathbf{n} = 1/2 \implies d_f = 6 - \frac{1}{1/2} = 4$

> $d_f=4$ for all d ≥ 6> $d_c=6$ is the upper critical dimension

> Same d_f is for finite clusters at $p ≥ p_c$ and $p < p_c$

Percolation Chemical Dimension

> The fractal dimension d_f is not enough to characterize the percolation cluster

This is obvious when looking on DLA and percolation
 For d=3 both have same d_f ≈ 2.5
 Percolation has loops – DLA has no loops

Shortest Path

>For better characterization we study the shortest path between A and B

> The shortest path ℓ is self-similar with fractal dimension d_{min}

$$\ell \sim r^{d_{\min}}$$

Chemical Dimension

> The chemical dimension d_{ℓ} is defined by

$$M \sim \ell^{d_{\ell}} \sim r^{d_{\min} \cdot d_{\ell}}$$

Since
$$M \sim r^{d_f} \implies d_f = d_{\min} \cdot d_\ell$$

➢ For percolation in d = 2d_{min} ≈ 1.13
d = 3
d_{min} ≈ 1.38

Only numerical simulations ! No theory !

For
$$d \ge 6$$
 $d_{\min} = 2$

Theory: in ∞ dimensions - no interactions each path is a random walk

$$\ell \sim r^2$$
 (ℓ - is like time)

$$\succ$$
 d_{\min} distinguish between DLA and percolation

$$d_{\min} = 1.38$$
 for percolation (d=3)
 $d_{\min} = 1$ for DLA (d=3)

Disease and fire spreading

The chemical distance is important for describing disease and fire spreading Assume sick people or trees are on a lattice with concentration p At each stage one chemical shell is infected The total number of trees burned until time $t = \ell$ is x

$$M(t) = t^{d}$$

> The distance where the disease or fire reached is

 $r \sim t^{1/d_{\min}}$

>The velocity of spreading is

$$u = \frac{dr}{dt} \propto t^{\frac{1}{d_{\min}}}$$

> This is true only for $r \sim t^{1/d_{\min}} < \mathbf{X}$

For $r > \mathbf{x}$ $r \sim t$ (regular lattice)

 $\Rightarrow u = \text{constant}$

> The constant velocity will occur at

 $r = \mathbf{x} = (p - p_c)^{-\mathbf{n}}$ and $t_{\mathbf{x}} \sim \mathbf{x}^{d_{\min}} \sim (p - p_c)^{-\mathbf{n} d_{\min}}$

> We can calculate the constant velocity:

From
$$u \approx t^{\frac{1}{d_{\min}} - 1}$$

 $u \approx t_{\mathbf{x}}^{\frac{1}{d_{\min}} - 1} \approx (p - p_c)^{-nd_{\min}\left(\frac{1}{d_{\min}} - 1\right)}$
 $\underline{u} \approx (p - p_c)^{(d_{\min} - 1)n}$
For $d = 2$ $(d_{\min} - 1)n = 0.13 \cdot \frac{4}{3} \approx 0.16$

- very small exponent

➤If at p<p_c the fire (or disease) does not spread at all just above p_c the fire (or disease) spreads very fast which increases when p increases

Percolation – substructures Backbone, dead ends, red bond and blobs

- The fractal dimensions d_f and d_{min} are not enough to characterize percolation clusters
- We impose a voltage drop between two sites on the infinite cluster
- The backbone includes all bonds which carry current
- The dead ends are the parts that do not carry any current
- The red bonds (called also singly connected bonds) are those links that carry all current (dark black). When they are cut the current stops
- Blobs are the parts of the backbone left after removing the red bonds

