
Complex Networks

• Network is a structure of N nodes and 2M  links (or M edges)

• Called also graph – in Mathematics

• Many examples of networks

Internet: nodes represent computers

links the connecting cables

Social network: nodes represent people

links their relations

Cellular network: nodes represent molecules

links their interactions



• Complex systems are usually composed of many 

interacting  entities.

• Can be well  represented by 

networks: nodes represent the 

entities and  links their 

interactions. 

• Examples: biological systems, social systems,

climate, earthquakes, epidemics, transport, economic,

etc.

• Weighted networks each link (node) has a weight 

determining the  strength or cost of the link (node).

Networks as a tool for Complex systems



Social Networks- Stanley Milgram (1967)

Nodes: individuals 

Links: social relationship 

(family/work/friendship/etc.) Six Degrees of Separation

John Guare

(1992)



Map showing the world-wide internet traffic



A snapshot of Internet connectivity.



Hierarchical topology of the international web cache 



Image of Social links in Canberra, Australia



Network of protein-protein interactions. The color of a node signifies 

the phenotypic effect of removing the corresponding protein

(red, lethal; green, non-lethal; orange, slow growth; yellow, unknown).



Complex systems

Made of                                        

many non-identical elements

connected by diverse interactions.

NETWORK



 Degree distribution          P(k) -- k- degree of a node

 Diameter or distance – Average distance between nodes--d

 Clustering Coefficient c(k)=

How many of my friends are also friends?

 Centrality or Betweeness -- b

Number of times a bond or a node is relatively used for the 

shortest path

 Critical Threshold: The concentration of nodes that are 

removed and the network collapses

Network Properties
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              Random Graph Theory 
 
 
 

 

Developed in the 1960’s by Erdos and Renyi. (Publications of the Mathematical 

Institute of the Hungarian Academy of Sciences, 1960). 

Discusses the ensemble of graphs with N vertices and M edges (2M links). 
 

Distribution of connectivity per vertex is Poissonian (exponential), 

where k  is the number of links : 
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Distance   d=log N    --     SMALL WORLD 



 Phase transition at average connectivity,             :  

 
k  1  No spanning cluster (giant component) of order logN 

  k  1    A spanning cluster exists (unique) of order  N 

 
k  1

  The largest cluster is of order  N 2 3/  

 

k  1

More Results 

 

 

 

 

 

 

 

 

 

 
 

 Size of the spanning cluster is determined by the self-consistent equation: 
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 Behavior of the spanning cluster size near the transition is linear: 

 ( )cP p p 

   ,   1 ,   where p  is the probability of  a site to exist, 

 

1/cp k



Percolation on a Cayley Tree 
 

 

 

 

 

 

 

 

 

 

 
 

Contains no loops 

Connectivity of each node is fixed (z connections) 
 

Behavior of the spanning cluster size near the transition is linear: 

 
)( ppP c  ,   1  

 

 
 

Critical threshold: 
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In  Real World - Many Networks are non-Poissonian 
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New Type of Networks

Poisson distribution

Exponential Network

Power-law distribution

Scale-free Network



Networks in Physics



Internet Network

Faloutsos et. al., SIGCOMM ’99



Metabolic network



Jeong et all Nature 2000



Jeong et al, Nature (2000) 



More Examples

• Trust networks: Guardiola et al (2002)

• Email networks: Ebel etal PRE (2002)

Trust

Trust

Email

-2.9



Erdös Theory is Not Valid 
Distribution 

Generalization of Erdös Theory: 
Cohen, Erez, ben-Avraham, Havlin, PRL 85, 4626 (2000) 

Epidemiology Theory: Vespignani, Pastor-Satoral, 
PRL (2001), PRE (2001) 

Modelling: Albert, Jeong, Barabasi (Nature 2000) 
Cohen, Havlin,

Phys. Rev. Lett. 90, 58701(2003)

Infectious disease 

Malaria                     99%

Measles                  90-95%

Whooping cough   90-95%

Fifths disease         90-95%

Chicken pox           85-90%

Mumps 85-90%

Rubella 82-87%

Poliomyelitis          82-87%

Diphtheria 82-87%

Scarlet fever           82-87%

Smallpox 70-80%

INTERNET              99%

Critical  

concentration 

Stability and Immunization

Critical concentration 30-50%
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Distance 

Almost constant 
(Metabolic Networks, 

Jeong et. al.  

(Nature, 2000)) 

Nd log~



Experimental Data: Virus survival 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(Pastor-Satorras and Vespignani, Phys. Rev Lett. 86, 3200 (2001)) 



Erdös-Rényi model
(1960)

- Democratic

- Random

Pál Erdös

(1913-1996)

Connect with 

probability p

p=1/6

N=10 

k ~ 1.5 Poisson distribution



Scale-free model
(1)GROWTH :

At every time step we add a new node with m edges 

(connected to the nodes already present in the system).

(2) PREFERENTIAL ATTACHMENT :

The probability Π that a new node will be connected to 

node i depends on the connectivity ki of that node

A.-L.Barabási, R. Albert, Science 286, 509 (1999)
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Cohen, Havlin   Phys. Rev. Lett. 90, 58701(2003)

Cohen, Havlin and ben-Avraham, in Handbook of Graphs and Networks 

eds. Bornholdt and Shuster (Willy-VCH, NY, 2002) chap.4

Confirmed also by: Dorogovtsev et al (2002), Chung and Lu (2002)

Ultra 

Small 

World 

Small World

(Bollobas, Riordan, 2002)

(Bollobas, 1985)

(Newman, 2001)

( ) ~P k k 

Shortest Paths in Scale Free Networks



 

 

         

 

( ) , 2.5P k k   

Where does the phase transition occur ? 

Nodes are randomly removed (or immune)

with probability  q=1-p

Model of Stability
Random Breakdown (Immunization)

The Internet is believed to be almost randomly connected scale-free network, where



Model for Stability 
Targeted Attack (Immunization) 

 

Is this fundamentally different from random breakdown? 

We find that not only critical thresholds but also critical exponents are different !

THE UNIVERSALITY CLASS DEPENDS ON THE WAY CRITICALITY REACHED

The fraction, q , of nodes with the highest degree are removed (or immunized).



THEORY FOR ANY DEGREE DISTRIBUTION 

Condition for the Existence of a Spanning Cluster 
 

If we start moving on the cluster from a single site, in order that 

the cluster does not die out, we need that each site reached will 

have, on average, at least 2 links (one “in” and one “out”). 
 

But, by Bayes rule:
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Exponential graph: 
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Cayley Tree: 
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Combining all this together:
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   (for every distribution) at the critical point. 

This means: 
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    ( ) 2 ,  where   i j  means that site i  is 

connected to site    j . 
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Cohen et al, PRL 85, 4626 (2000): PRL 86, 3862 (2001)



Percolation for Random Breakdown 

If percolation is considered the connectivity distribution changes according 

to the law: 
'
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Calculating the change in        gives the percolation threshold: 
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For scale-free graphs where  the second moment diverges. 

No critical threshold! 

Network is stable (or not immunized) even for q1



Efficient Immunization 

Strategies:

Acquaintance Immunization

Critical Threshold 

Scale Free

Cohen et al. Phys. Rev. Lett. 91 , 168701 (2003)
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Percolation for Targeted  Attack (Immunization) 
 

Attack has two kinds of influence on the connectivity 

distribution: 

  Change in the upper cutoff 

Can be calculated by ( )
K

k K

P k p


 ,  

or approximately: 
1/(1 )K mp  . 

 

Change in the connectivity of all other sites due to 

possibility of a broken link (which is different than 
in random breakdown). The probability of a link 

to be removed can be calculated by:  
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There exists a finite percolation threshold even for networks robust to random removal



Efficient Immunization 

Strategies:

Acquaintance Immunization

Critical Threshold 

Scale Free

Cohen et al. Phys. Rev. Lett. 91 , 168701 (2003)
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Critical Exponents

Using the properties of power series (generating functions) near a singular point 

(Abelian methods), the behavior near the critical point can be studied.

(Diff. Eq. Melloy & Reed (1998) Gen. Func. Newman Callaway PRL(2000), PRE(2001))

For random breakdown the behavior near criticality in scale-free networks is different 
than for random graphs or from mean field percolation. For intentional attack-same as 
mean-field.
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Distribution of finite clusters at criticality:

Even for networks with                  , where        and          are finite, the critical exponents change 

from the known mean-field result           . The order of the phase transition and the exponents 

are determined by         .
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Random Graphs – Erdos Renyi(1960)

Largest cluster at criticality
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Scale Free networks

Fractal Dimensions

From the behavior of the critical exponents the fractal dimension of scale-free graphs 

can be deduced.

Far from the critical point - the dimension is infinite - the mass grows exponentially 

with the distance.

At criticality - the dimension is finite for  >3 .
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Embedding dimension:

(upper critical dimension)

The dimensionality of the graphs depends on the distribution!


