Complex Networks

» Network 1s a structure of N nodes and 2M links (or M edges)
« Called also graph — in Mathematics
« Many examples of networks

Internet: nodes represent computers

links the connecting cables

Soclal network: nodes represent people =~

..

links their relations
Cellular network: nodes represent mole

links theilr interactions



Networks as a tool for Complex systems

« Complex systems are usually composed of many
Interacting entities.

» Can be well represented by
networks: nodes represent the
entities and links their
Interactions.

‘ o T l;uﬂ e

« Examples: biological systems, social systems,
climate, earthquakes, epidemics, transport, economic,
etc.

 \WWeighted networks each link (node) has a weight
determining the strength or cost of the link (node).



Social Networks- Stanley Milgram (1967)

(&b
Nodes: individuals John Guare
Links: social relationship (1992)

(fami|y/W0rk/friendShip/9tC.) SiXx Degrees of Separation



Map showing the world-wide internet traffic




A snapshot of Internet connectivity.
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Hierarchical topology of the international web cache
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Network of protein-protein interactions. The color of a node signifies
the phenotypic effect of removing the corresponding protein
(red, lethal; green, non-lethal; orange, slow growth; yellow, unknown).



o Humans have only about thrﬁe times as many genes as the
Y,
s0 human complexity seems unlikely to come from a sheer quantity of genes.
Rather, some scientists suggest, each human has a network with different parts
like genes, proteins and groups

b 40 genes, and the human

DROSOPHILA MELANOGASTER HOMO SAPIENS
(Fruit fly)
1 ] T AR DR AT In this example the fly has 1 ] DAL BT DT AT
| -.J "-,-![J "-,-lJ Ul Ll Y '.-.J "-,-!U "-,'IJ Ldl LdV )
L

e o In the generic networks shown, the points
represent the elements of each organism’s
genetic network, and the dotted lines show the inter-
actions between them. Humans have many more ele=

Sources: Dr. Albert-LasziG Barabdsl, University of Motre Dame; Sclence; Celera Genomics

Complex systems

Made of
many non-identical elements
connected by diverse interactions.

Steve Duenes/The New York Times



Network Properties

¢ Degree distribution P(k) -- k- degree of a node

s Diameter or distance — Average distance between nodes--d

c(k)= no.of links between k neighbors
k(k -1)/2
How many of my friends are also friends?

¢ Clustering Coefficient

¢ Centrality or Betweeness -- b

Number of times a bond or a node is relatively used for the
shortest path

¢ Critical Threshold: The concentration of nodes that are
removed and the network collapses

d(AB) =3

c(D):gz
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Random Graph | heory

e Developed in the 1960°s by Erdos and Renyi. (Publications of the Mathematical
Institute of the Hungarian Academy of Sciences, 1960).

e Discusses the ensemble of graphs with N vertices and M edges (2M links).

e Distribution of connectivity per vertex is Poissonian (exponential),
where k 1s the number of links :

. cf 2M
P(k)_e Kl s C=<k>=T

e Distance d=logN -- SMALLWORLD



More Results

e Phase transition at average connectivity, (k) =1:
(k) <1 No spanning cluster (giant component) of order logN
(k)>1 A spanning cluster exists (unique) of order N
(k)=1 The largest cluster is of order N?2°

e Behavior of the spanning cluster size near the transition is linear:

P,oc(p- pc)ﬂ, B =1 where P isthe probability of a site to exist,
p, =1/(k)

e Size of the spanning cluster is determined by the self-consistent equation:
P, =1-¢ " 1




Percolation on a Cayley Tree
L

—

Contains no loops

Connectivity of each node is fixed (Z connections)

Critical threshold: pC —

Behavior of the spanning cluster size near the transition is linear:

Poooc(pc_p)ﬂ’ ﬁ:l



In Real World - Many Networks are non-Poissonian

Exponential Scale-free

k
P(k):e—<k> < > P(k)= Ck_/i m<k <K
0 otherwise



New Type of Networks

Poisson distribution

P(k)
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Networks in Physics
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Internet Network
Faloutsos et. al., SIGCOMM °99
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Metabolic network
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Metabolic Network

[ Nodes chemicals (substrates)

Links: bio-chemical reactions

Jeong et all Nature 2000



Metabolic network
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Organisms from all three domains of life are
scale-free networks!

Jeong et al, Nature (2000)



More Examples

100000 F————r—rr ]

* Trust networks: Guardiola et al (2002)
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Erdos Theory is Not Valid

Stability and Immunization | Distance | Distribution |
S oTTTTTT-TmmmmT T r o T T T T T T G - - T T T T T T
T
1 [ [ [
qc_l_ pc_l_— ! ! 2| ; :
(k) ' d~lbgN S| .
Critical concentration 30-50% : : <h> : ;
e e e e e e - = L e e e e e e m - = I I - - =
Infectious disease crncenaior : : :
Malaria 99% l I I
| | |
Measles 90-95% | : | e
Whooping cough 90-95% I Almost constant | ; | >
: - | (Metabolic Networks, I L |
Fifths disease 90-95% | Jeong et, al. 2 Lt : :
Chicken pox 85-90% ! (Nature, 2000)) g Olf 1
Mumps 85-90% : : 0.01[ : y
Rubella 82-87% | I 0.001f | ’;’
Poliomyelitis 82-87% | | 0.0001 ' -
Diphtheria 82-87% I I ‘ : TR 100'0 |, &
Scarlet fever 82-87% : : 3 :
Smallpox 70-80% , | |
INTERNET 99% | | |
Generalization of Erdds Theory: Cohen, Havlin,

Cohen, Erez, ben-Avraham, Havlin, PRL 85, 4626 (2000) Phys. Rev. Lett. 90, 58701(2003) Modelling: Albert, Jeong, Barabasi (Nature 2000)
Epidemiology Theory: Vespignani, Pastor-Satoral, ’
PRL (2001), PRE (2001)



Experimental Data: Virus survival
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FIG. 1. Surviving probability for viruses in the wild. The 814 different viruses analyzed have
been grouped in three main strains [9]: file viruses infect a computer when running an infected
application; boot viruses also spread via infected applications, but copy themselves into the boot
sector of the hard-drive and are thus immune to a computer reboot; macro viruses infect data
files and are thus platform-independent. It is evident in the plot the presence of an exponential
decay, with characteristic time 7 ~ 14 monfhs for macro and boot viruses and 7 ~ 7 months for

file viruses.

(Pastor-Satorras and Vespignani, Phys. Rev Lett. 86, 3200 (2001))



Erdos-Rényi model
(1960)

Connect with i ~
probability p Pal Erdos

Iy (1913-1996)
N=10
(K)~15  poisson distribution

- Democratic

- Random




Scale-free model
(1) GROWTH

At every time step we add a new node with m edges
(connected to the nodes already present in the system).

(2) PREFERENTIAL ATTACHMENT : k.
The probability II that a new node will be connected to H(k|) < 1
node i depends on the connectivity k; of that node 2 j kj

P() -k N
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A.-L.Barabasi, R. Albert, Science 286, 509 (1999)



Shortest Paths In Scale Free Networks

P(k) ~ k=
d = const. A=2
Smai d =loglog N 2<1<3
World
p— Iog N ﬂ/ — 3 (Bollobas, Riordan, 2002)
loglog N
smatwors— d = log N A>3 e ioe

Cohen, Havlin Phys. Rev. Lett. 90, 58701(2003)

Cohen, Havlin and ben-Avraham, in Handbook of Graphs and Networks
eds. Bornholdt and Shuster (Willy-VCH, NY, 2002) chap.4

Confirmed also by: Dorogovtsev et al (2002), Chung and Lu (2002)



Model of Stability
Random Breakdown (Immunization)
The Internet is believed to be almost randomly connected scale-free network, where

P(k) ck™*,1~2.5

Nodes are randomly removed (or immune)
with probability g=1-p

Where does the phase transition occur ?



Model for Stability

Targeted Attack (Immunization)

The fraction, q , of nodes with the highest degree are removed (or immunized).

Is this fundamentally different from random breakdown?

We find that not only critical thresholds but also critical exponents are different !
THE UNIVERSALITY CLASS DEPENDS ON THE WAY CRITICALITY REACHED



THEORY FOR ANY DEGREE DISTRIBUTION
Condition for the Existence of a Spanning Cluster

If we start moving on the cluster from a single site, in order that
the cluster does not die out, we need that each site reached will
have, on average, at least 2 links (one “in” and one “out”).

This means: <ki ‘i A j> - ;ki P(ki‘i )2 2, where i< j means thatsite i is

connected to site ] .

P(i < jlk,)P(k;)

. P(k. i |) =
But, by Bayes rule: ( .\' < ]) Pi o J) —
K, k) K*) K +lk)
We know that P <> k) = N_1 and Plie ) =17 k)
= (k)=1
- - . — k_2> -2 Cayley Tree:
Combining all this together: * = k) .
- . . .- . Pe =71
(for every distribution) at the critical point.

Cohen et al, PRL 85, 4626 (2000): PRL 86, 3862 (2001)



Percolation for Random Breakdown

If percolation is considered the connectivity distribution changes according

_ k' ,
to the law: P(K)= 2 P(k')( kj pX K (1- p)¥
K'>k

Calculating the change in K gives the percolation threshold:
1 Ko
p. =1-0, = x, —1' Where Ko :<<k—z>>' compared to p. =1 <k, > for Erdos Renyi

For scale-free distribution with lower cutoff M | and upper cutoff K , gives
1

31 34 1
K‘OZ(Z_in M KON
3_1 KZ—/l_mZ—/"t

For scale-free graphs where the second moment diverges.
No critical threshold!
Network is stable (or not immunized) even for g—>1




Critical Threshold
Scale Free

1 & =
robust
Poor immunization R

Acquaintance

0.2 %
e e e e e
vulnerable pentional il
O Efficient immunizatign , | e
2 2.5 A 3 2.5

Cohen et al. Phys. Rev. Lett. 91, 168701 (2003)

General result:

0. = 1

K, -1
k2

()

For Poisson:

(K2) (k) +(k)
STy T
L1
0

Efficient Immunization
Strateqies:

Acquaintance Immunization



Percolation for Targeted Attack (Immunization)

Attack has two kinds of influence on the connectivity
distribution:

e Change in the upper cutoff
K
Can be calculated by k_Z}%F’(k) =p,

1/(1-2)

or approximately: K=mp"“*
e Change in the connectivity of all other sites due to
possibility of a broken link (which is different than
In random breakdown). The probability of a link
to be removed can be calculated by:
1 K
p=-—> kP(k
P =) kZK (k)
or approximately: P=p*"""
1
Substituting this into: 1= P ==,

2_ K3* _m _ o
aj <= _mz7 , gives the critical threshold.

where ¥ =(

3—«o

There exists a finite percolation threshold even for networks robust to random removal
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Critical Exponents

Using the properties of power series (generating functions) near a singular point
(Abelian methods), the behavior near the critical point can be studied.
(Diff. Eq. Melloy & Reed (1998) Gen. Func. Newman Callaway PRL(2000), PRE(2001))

For random breakdown the behavior near criticality in scale-free networks is different
than for random graphs or from mean field percolation. For intentional attack-same as
mean-field.

Even for networks with 3 < A < 4, where (k) and <k2> are finite, the critical exponents change

from the known mean-field result # =1. The order of the phase transition and the exponents
are determined by <k3> .

Size of the infinite cluster:

1 2<A<3
3—4
1
~ B —J_—
|:)OO (p_pc) s </’L—3 3<A<4
1 A>4 (known mean field)
Distribution of finite clusters at criticality:
2473 .4
n ~s° L] A-2

25 A1=4 (known mean field)



Fractal Dimensions

From the behavior of the critical exponents the fractal dimension of scale-free graphs

can be deduced.
Far from the critical point - the dimension is infinite - the mass grows exponentially

with the distance.
A>3 . .
Random Graphs — Erdos Renyi(1960)

(1-2
— A<4 -
Chemical dimension: d = A-3 Largest cluster at criticality
d 2 124 2
S g% f S[]1 N3
2% A<4
Fractal dimension: d =4 *~ Scale Free networks
| 4 A>4 d, e
i \ — AL
SUR (1.1 SORON% N+ 2<4
Zﬂ A<4 )
Embedding dimension: d, =4 ~ S N3 154
(upper critical dimension) 6 A>4

The dimensionality of the graphs depends on the distribution!



