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Complex Networks

o Network is a structure of N nodes and 2M links (or M edges)
o Called also graph — in Mathematics
e Many examples of networks
. nodes represent computers
links the connecting cables
. nodes represent people

links their relations

. nodes represent molecules
links their interactions

 \Weighted networks each link has a weight determining the
strength or cost of the link
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Social Networks- Stanley Milgram (1967)

v
Nodes: individuals John Guare
Links: social relationship (1992)

(family/work/friendship/etc.) Six Degrees of Separation
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Map showing the world-wide internet traffic
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Skitter data depicting a macroscopic snapshot of
Internet connectivity, with selected backbone I1SPs
(Internet Service Provider) colored separately
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Hierarchical topology of the international web cache
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Image of Social links in Canberra, Australia
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Network of protein-protein interactions. The color of a node signifies
the phenotypic effect of removing the corresponding protein
(red, lethal; green, non-lethal; orange, slow growth; yellow, unknown).
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Humans have only about thrﬁe times as many genes as the
Y,
50 human complexity seems unlikely to come from a sheer guantity of genes.
Rather, some scientists suggest, each human has a network with different parts
like genes, proteins and groups

DROSOPHILA MELANOGASTER HOMO SAPIENS

(Fruit fly)

. J"" |.IH' J« AV AP In this example the fly has
sl el el Ly sl 40 genes, and the human

o In the generic networks shown, the points
represent the elements of each organism’s
genetic network, and the dotted lines show the inter-
actions between them. Humans have many more ele-

Sources: Dr. Albert-Laszld Barabdsl, University of Notre Dame; 5clence; Celera Genomics

Complex systems

Made of
many non-identical elements
connected by diverse interactions.

v

Steve DuenesThe New York Times
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Network Properties

¢ Degree distribution P(k) -- k- degree of a node

¢ Diameter or distance — Average distance between nodes--d

c(k)= no. of links between k neighbors
k(k-1)/2

How many of my friends are also friends?

¢ Clustering

¢ Centrality or -Db

Number of times a bond or a node is relatively used for the
shortest path
X The concentration of nodes that are

removed and the network collapses

d(AB) =3

c(D)=§=

w| K

b(BC):%:l




Percolation: Theory and Applications Prof. Shiomo Hawlin

Random Graph Theory

e Developed in the 1960’s by Erdos and Renyi. (Publications of the Mathematical
Institute of the Hungarian Academy of Sciences, 1960).

e Discusses the ensemble of graphs with N vertices and M edges (2M links).

e Distribution of connectivity per vertex is Poissonian (exponential),
where k 1s the number of links :

. c 2M
P(k)=e™ -7 c=(k)="]

e Distance d=logN -- SMALLWORLD
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More Results

o Phase transition at average connectivity, (k) =1:
(k) <1 No spanning cluster (giant component) of order logN
(k)>1 A spanning cluster exists (unique) of order N
(k)=1 The largest cluster is of order N??

e Size of the spanning cluster is determined by the self-consistent equation:
P, =1-e WP

e Behavior of the spanning cluster size near the transition is linear:

P, o (p, — p)” , B=1 where P isthe probability of deleting a site,
p. =1-1/(k)
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Percolation on a Cayley Tree
|

e Contains no loops

e Connectivity of each node is fixed (Z connections)

1
z —1

Critical threshold: p c =

e Behavior of the spanning cluster size near the transition is linear:

P, (p.—p)’ p-=1
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In Real World - Many Networks are non-Poissonian

Exponential Scale-free

P(k) _ e—<k> <k>k P(k) = ck™® m<k<K
0 otherwise
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New Type of Networks

Poisson distribution PO,".".?.Y".@‘.’Y.,C’i.st.r.i..bUt.i?”
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Networks in Physics
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Internet Network
Faloutsos et. al., SIGCOMM ’99
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Metabolic network

A R C D E F T K L

1 Biochemical Pathways
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Metabolic Network

{ Nodes: chemicals (substrates)

Links: bio-chemical reactions

Jeong et all Nature 2000
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Metabolic network
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Organisms from all three domains of life are
scale-free networks!

Jeong et al, Nature (2000)
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More Examples

e Trust networks: Guardiola et al (2002)
» Email networks: Ebel etal PRE (2002)

Prof. Shiomo Hawlin
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Erdos Theory is Not Valid

Stability and Immunization | Distance | Distribution |
- TTTTTTT-TTTTT 7 P T T T T T T 0T | aaEaSnEnEEnRaiN 0 1
1 1 1 I T
Pe = 1- ! ! 2| -
(k) " d~logN 3 -
Critical concentration 30-50% ' ' <k> ' ;
| | YN |
e [ _ _ _ - _ _ _ _ [ o - = =
Infectious disease  concentration | ! !
Malaria 99% | | |
Measles 90-95% : : : E
Whooping cough 90-95% I Almost constant | ; D "4
Fifths disease 90-95% 1 (Metabolic Networks, 1 l [ 1 y -
) 1 Jeong et. al. I o I I e
Chicken pox 85-90% I (Nature, 2000)) 1 & O.1¢ 1~
Mumps 85-90% : : 0.01F : 7
Rubella 82-87% I I 0.001F , I
] . e
Poliomyelitis 82-87% : : 0.0001F : n
Diphtheria 82-87% | : ' . . . i A
Scarlet fever 82-87% l l 1 mk 100 1000 l
Smallpox 70-80% : : :
INTERNET 99% I I I
Generalization of Erdos Theory: Cohen, Havlin,

Cohen, Erez, ben-Avraham, Havlin, PRL 85, 4626 (2000)  phys. Rev. Lett. 90, 58701(2003) Modelling: Albert, Jeong, Barabasi (Nature 2000)
Epidemiology Theory: Vespignani, Pastor-Satoral,
PRL (2001), PRE (2001)
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Experimental Data: Virus survival
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FIG. 1. Surviving probability for viruses in the wild. The 814 different viruses analyzed have
been grouped in three main strains [9]: file viruses infect a computer when running an infected
application; boot viruses also spread via infected applications, but copy themselves into the boot
sector of the hard-drive and are thus immune to a computer reboot; macro viruses infect data
files and are thus platform-independent. It is evident in the plot the presence of an exponential
decay, with characteristic time 7 =~ 14 monfhs for macro and boot viruses and 7 ~ 7 months for

file viruses.

(Pastor-Satorras and Vespignani, Phys. Rev Lett. 86, 3200 (2001))



Erdos-Rényi model
(1960)

Connect with i ~
probability p Pal Erd6s

e (1913-1996)
N=10
(k) ~1.5  Ppoisson distribution
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Scale-free model
(1) GROWTH :

At every time step we add a new node with m edges
(connected to the nodes already present in the system).

(2) PREFERENTIAL ATTACHMENT :

The probability M that a new node will be connected to . K
node | depends on the connectivity k; of that node ) it

' P(k) ~k? Y
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A.-L.Barabasi, R. Albert, Science 286, 509 (1999)
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Shortest Paths in Scale Free Networks

P(k) ~ k=
d = const. A=2
Smai d =loglog N 2<1<3
World
p— Iog N 2« —_ 3 (Bollobas, Riordan, 2002)
loglog N
smaitworid d =logN A>3 (G

Cohen, Havlin Phys. Rev. Lett. 90, 58701(2003)

Cohen, Havlin and ben-Avraham, in Handbook of Graphs and Networks
eds. Bornholdt and Shuster (Willy-VCH, NY, 2002) chap.4

Confirmed also by: Dorogovtsev et al (2002), Chung and Lu (2002)
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Model of Stability

Random Breakdown (Immune)

The Internet is believed to be a randomly connected scale-free network, where

P(kK)ock ™ 1~25

Nodes are randomly removed (or immune)
with probability P

Where does the phase transition occur ?
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Model for Stability

Intentional Attack (Immune)

The fraction, p, of nodes with the highest connectivity are removed (or immune).

Is this fundamentally different from random breakdown?

We find that not only critical thresholds but also critical exponents are different !
THE UNIVERSALITY CLASS DEPENDS ON THE WAY CRITICALITY REACHED



Percolation: Theory and Applications Prof. Shiomo Hawlin

THEORY FOR ANY DEGREE DISTRIBUTION
Condition for the Existence of a Spanning Cluster

If we start moving on the cluster from a single site, in order that

the cluster does not die out, we need that each site reached will

have, on average, at least 2 links (one “in” and one ““out”).

This means: <ki ‘i N j> = ;ki P(ki‘i ©])2 2 where i< j means thatsitei is

connected to site  j.

P(i & jk,)P(k;)

But, by Bayes rule: P(ki‘l < J) - P(i <~ J) Exponential graph:
Kk, (k) k) 0l
We know that Pl <> J‘k ) = N _1 and P(i & )—m k)~ (k)
—(k)=1
. . . . = < > Cayley Tree:
Combining all this together: k) a1
(for every distribution) at the critical point. Tzl

Cohen et al, PRL 85, 4626 (2000): PRL 86, 3862 (2001)
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Percolation for Random Breakdown

If percolation is considered the connectivity distribution changes according

_ k' ,
to the law: P(K) = > P(kl)( kj p* K (1- p)¥
k'>k

Calculating the condition K =2 gives the percolation threshold:

1 ko
l1-p. = =l where Ko = <<kz> - compared to p, =1-1/<k,> for Erdos Renyi

and p,=1- 1 for Cayley tree

z-1

For scale-free distribution with lower cutoff M, and upper cutoff K , gives
1

B 3-1 13-4 1
KoZ(Z ZJK m o NL

3—1)KZ* —m*>*’
For scale-free graphs with 41<3 the second moment diverges.
No critical threshold!

Network is stable (or not immuned) even for P —1.
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Percolation for Intentional Attack (Immune)

Attack has two kinds of influence on the connectivity
distribution:
e Change in the upper cutoff

K
Can be calculated by k_Z_F’(k)= p

or approximately: K =mp"**

e Change in the connectivity of all other sites due to
possibility of a broken link (which is different than
In random breakdown). The probability of a link
to be removed can be calculated by:

‘ -

< S 2 Z kP (k)

or approximately: p=p*“ ”"H).
o . 1

Substituting this into: 1= P. ==,

3-1

_ (2-a\R¥ - . »
where K=[ aj ——— =, gives the critical threshold.

3—a K

There exists a finite percolation threshold even for networks resilient to randomerror!
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Critical Threshold
Scale Free

General result:

1
— ] | | K, -1

T

robust
- . . R
O 8_ Poor immunization andOm

O

Pe oK) 0 (k)
I Acquaintance : ° <k > <k >

- fflalﬂnerabIge_[r;t;{i;}];?“‘“—-u«a&__ﬁ_ﬁ - p.=1--—
0 Efficient immunizatipn , | , e <k>
2 2.5 3 3.5 o -
A Efficient Immunization
Strategies:

Cohen et al. Phys. Rev. Lett. 91 , 168701 (2003) ) -
Acquaintance Immunization
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Critical Exponents

Using the properties of power series (generating functions) near a singular point
(Abelian methods), the behavior near the critical point can be studied.
(Diff. Eq. Melloy & Reed (1998) Gen. Func. Newman Callaway PRL(2000), PRE(2001))

For random breakdown the behavior near criticality in scale-free networks is different
than for random graphs or from mean field percolation. For intentional attack-same as
mean-field.

Even for networks with 3 < A < 4, where <k> and <k2> are finite, the critical exponents change

from the known mean-field result B =1. The order of the phase transition and the exponents
are determined by <k3> .

Size of the infinite cluster:

1 2 < A <3
3 -
1
~ B .
P.~(p-p) P=y7-3 3<4<4
1 A >4 (known mean field)
Distribution of finite clusters at criticality:
24=3 44
n —_ S = r = 4 ﬂ/ - 2

2.5 A>4 (known mean field)
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Fractal Dimensions

From the behavior of the critical exponents the fractal dimension of scale-free graphs
can be deduced.

Far from the critical point - the dimension is infinite - the mass grows exponentially
with the distance.

A>3 .
(1_9 Random Graphs — Erdos Renyi(1960)
— A<4
el fFrnEreiae d —. A-3 Largest cluster at criticality
; =
] 2 Az4 3
S~ 1™ o, S ~ N?
2272 54
Fractal dimension: di =5 A3 0510 B IENOLE
0 \ 4 A>4 d d =
S~R (-1 S~RY ~N% ~N+1 2<4
2—— A<4 ,
Embedding dimension: d, =+ S~ N3 154
(upper critical dimension) 6 A=4

The dimensionality of the graphs depends on the distribution!
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