
Exact Results

Only few exact results exist!

a) One dimensional systems:

1cp =

Since infinite cluster can occur only if all sites are occupied

Thus only quantities below cp such as correlation length
and mean size of the clusters  S  are relevant!

The correlation function 

ξ

( ),g r defined as the prob. to have 
at distance r a site on the same cluster. 

( ) 2 rg r p=

r
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The correlation length    is defined as the mean distance 
between two sites on the same cluster

The sums can be performed easily

Thus                 in one dimension. The correlation function
g(r) near  pc

where the correlation length         represents the decay radius
of the correlation function.
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The mean mass S of the finite clusters is

The 1 comes from the site at the origin, which was assumed to
be occupied

Hence               in one dimension.

The probability that a chosen lattice site belongs to a cluster of 
s sites is                      . The factor s is due to the fact that the 
chosen site can be any of the s sites in the cluster. The factor

is due to the fact that every cluster must be surrounded
by perimeter sites which are empty. In d=1, every cluster has two
perimeter sites. The corresponding probability per cluster site, ,
is defined 
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- probability that a cluster is of size s.         is also the number
of clusters of size s divided by the total number of sites in the 
system. Thus,                   
The mean cluster mass S is related to     by

sn sn

1
.ss

The factor                        is the probability that an occupied site 
belongs to a cluster of s sites.
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The Cayley Tree

The Cayley tree is a structure without loops. From each site
z-1 new branches grow out, generating z(z-1) sites in the second
shell. For z=2, the tree reduces to the one-dimensional chain.

Two shells of a Cayley tree, with z=3
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There are no loops in the system, since any two sites are 
connected by only one path.

The Euclidean distance r has no meaning.

The lattice is described solely by the (shortest) chemical distance 
between two sites. A

For example, the chemical distance between the central site 
and a site on the     th shell is exactly     .A A

The    th shell of the tree consists of                  sites, increasing
exponentially with     .

A 1( 1)z z −− A

A
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In a d-dimensional Euclidean lattice, with d finite, the number 
of sites at distance       increases asA 1d −A

Since the exponential dependence can be considered as a power-law
behavior with an infinite d (dimension), the Cayley tree can be
regarded as an infinite-dimensional lattice. 

From the universality property we can expect that the critical 
exponents derived for percolation on the Cayley tree will be 
the same as for percolation on any infinite-dimensional lattice.

It is known that the upper critical dimension for percolation is
dc=6, i.e., for           the critical exponents are the same for
all dimensions.

Thus we expect that the exponents for percolation on the Cayley
tree are the same as in                 dimensions.

6d ≥

6d ≥
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Percolation on a Cayley Tree 
 
 
 
 
 
 
 
 
 
 
 

 

• Contains no loops 

• Connectivity of each node is fixed (z connections) 
 

• Behavior of the spanning cluster size near the transition is linear: 

 ( )cP p p β
∞ ∝ − ,   1=β  

 
 

 

• Critical threshold: 
 

 

1
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−
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              Random Graph Theory
 
 
 

• Developed in the 1960’s by Erdos and Renyi. (Publications of the Mathematical 
Institute of the Hungarian Academy of Sciences, 1960). 

• Discusses the ensemble of graphs with N vertices and M edges (2M links). 
 
• Distribution of connectivity per vertex is Poissonian (exponential), 

where k  is the number of links : 
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• Distance   d=log N    --     SMALL WORLD 

Percolation: Theory and Applications Prof. Shlomo Havlin

9 of 10



More Results 
 
 
 
 
 
 
 
 
 

 
 

• Phase transition at average connectivity,             :  
 k < 1   No spanning cluster (giant component) of order logN 
  k > 1     A spanning cluster exists (unique) of order  N 

 k = 1   The largest cluster is of order  N 2 3/  
 

k = 1

• Size of the spanning cluster is determined by the self-consistent equation: 

 P e k P
∞

−= − ∞1  
 

• Behavior of the spanning cluster size near the transition is linear: 

 
β)( ppP c −∝∞ ,   1=β ,   where p  is the probability of deleting a site, 

 

1 1/cp k= −
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