
Scaling Theory

The distribution of clusters of size s per lattice site for Cayley tree: 
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•The     refer to below and above    .  
•The critical exponents are universal and depend on dimension 
•The form of          need not to be universal
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Scaling Relations

Accepting the scaling ansatz the mean cluster size    
and the probability     can be calculated.
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Calculating        : P∞

Scaling Relations

Each site on the lattice is either:
(a) empty with prob. 1-p 
(b) occupied and on the infinite cluster with prob.        
(c) occupied but not on the infinite cluster with prob. 
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Scaling Relations

0

 and  represent the first and second moment of 
The zeroth moment  represents the mean

number of clusters (per lattice site).
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This relation defines        (analogous to specific heat)α
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1For Cayley tree α = −
For , , ,  and  we have three relations.
Thus only two exponents are independent

α β γ ν σ
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