
Percolation – Geometrical Properties

¾ A percolation cluster can be characterized by fractal geometry

¾We can see in the infinite cluster, at pc, holes in all scales – like Sierpinski gasket

¾ The cluster is self-similar (from pixel size to system size)

¾ The square in left top is magnified in right top 
magnified in left bottom 
magnified in right bottom

⇒
⇒

¾ The difficulty to easily realize 
the order is a sign of self-similarity



Random Fractals 
 

� Fractals in nature are not deterministic 
� One can generate random fractals 
� Instead of always removing the central square, we remove randomly one of 

the 9 squares 
 
      Random Sierpinski carpet     Deterministic Sierpinski carpet 
 

                                                          
 

� The fractal dimension of the random Sierpinski carpet is the same as the 
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� The self-similarity is not exact – valid statistically 



Random Fractals – Fractal Dimension

Methods: (a) cluster growing; (b) box counting; (c) correlations. 

- Choose a site on the fractal – origin
- plot circles of several radiuses
- radius of the fractal
- count the number of sites inside  
- repeat the measurements for several origins
- average over all           for each
- plot          vs on log-log plot
- the slope is      of the fractal
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This method is analogous to the determination of       in deterministic fractals.
How the mass        scales with the linear metric     .
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Fractal Dimension- Infinite Percolation Cluster

Slope=1.896=df



Box counting method

• Draw a lattice of squares of different sizes  
• For each   count the number of boxes
needed to cover the fractal

• increases with decreasing  

The fractal dimension is obtained from

• Plotting         vs on log-log graph –
the slope is 
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Correlation method

Measurements of the density-density autocorrelation function 
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The volume                     . 
is the average density at distance     from a site on a fractal.

For isotropic fractals we expect                          .
The mass within a radius     is:

Thus, from measuring      one can determine     .
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4.4 Experimental method

• Scattering experiments like x-rays, neutron scattering etc. with different 
wave vectors is proportional to the structure factor. 
- The structure factor is the Fourier transform of the density-density 
correlation function.

For fractals – the structure factor is

is the wave vector.

Since physical fractals have lower and upper bounds length scales 
(          and           )

It follows that only for                                      , we obtain 
-
Measurements of          yields 
Example: polymers.
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Percolation – fractal dimension

¾ The fractal dimension df describes how the mass M(r) scales within a circle of radius r

( ) fdM r Ar

¾ The center of the circle on a site
¾M(r) is averaged of many different circles
¾ Size of finite clusters (≡holes) is ξ - correlation length
¾ At                                 , and we have holes of all scales
¾ Above pc, ξ is finite and self-similarity exists only for scales smaller than ξ
¾ Above ξ - the cluster is homogeneous!
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¾ Demonstration of self-similarity for scales below ξ and homogeneous above ξ



Percolation – Fractal Dimension

¾Mathematically: ( )
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Fractal dimension - Theory

¾ Relation between  df and β and ν:
We can calculate: fd

d
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¾ The probability that a site belongs to ∞-cluster is the ratio between the number of 
sites on the ∞-cluster and the total number of sites( )fdr ( )dr
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Infinite Percolation Cluster



Fractal Dimension
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¾df=4 for all 
¾dc=6 is the upper critical dimension
¾Same df is for finite clusters at             and cp p≥ cp p<

6d ≥

Important relation: 


