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Percolation — Geometrical Properties

» A percolation cluster can be characterized by fractal geometry
» We can see in the infinite cluster, at p,, holes in all scales — like Sierpinski gasket

» The cluster is self-similar (from pixel size to system size)

» The square in left top is magnified in right top
= magnified in left bottom
— magnified in right bottom

» The difficulty to easily realize
the order is a sign of self-similarity
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Random Fractals

Fractals in nature are not deterministic

One can generate random fractals

Instead of always removing the central square, we remove randomly one of
the 9 squares

Random Sierpinski carpet Deterministic Sierpinski carpet

The fractal dimension of the random Sierpinski carpet is the same as the

1) 1 1\ log8
deterministic: M (— LJ:—M(L):(—j M(L), d; :i;1.893
3 8 3 log3

The self-similarity is not exact — valid statistically
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Random Fractals — Fractal Dimension

Methods: (a) cluster growing; (b) box counting; (c) correlations.

Choose a site on the fractal — origin

plot circles of several radiuses " Rmax

Rrax [ radius of the fractal

count the number of sites inside

repeat the measurements for several origins
average over all M (r) for each r

plot M(r) vs r on log-log plot

the slope is d; of the fractal

M(r)=Ar", logM(r)=logA+d, logr

This method is analogous to the determination of d; in deterministic fractals.
How the mass M scales with the linear metric r .
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Fractal Dimension- Infinite Percolation Cluster

Prof. Shiomo Hawlin

Slope=1.896=d, 107 | [ -

1 0 D o -0
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Box counting method

Draw a lattice of squares of different sizes ¢
For each ¢ count the number of boxes N(e)
needed to cover the fractal

N(¢) Increases with decreasing

The fractal dimension is obtained from

N(g) = A “
logN(¢) =log A—d; loge

Plotting N(¢) vs ¢ on log-log graph —
the slope Is -d
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Correlation method

Measurements of the density-density autocorrelation function
! ! 1 ! !
C(r)=(p(r)p(r'+r)), = VZp(r )p(r'+r)

|1 1f atr'thereisa site of the fractal
p(r) = . : : :
0 if at r'thereis no site

The volume V =D, po(r) .
C(r) isthe average density at distance r from a site on a fractal.

For isotropic fractals we expect C(r)=C(r)=Ar~”
The mass within a radius r is:

R
M(R) = [C(r)d"r =R™" = R
0

= |la=d-d;

Thus, from measuring @ one can determine d
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4.4 Experimental method

Scattering experiments like x-rays, neutron scattering etc. with different
wave vectors Is proportional to the structure factor.

The structure factor is the Fourier transform of the density-density
correlation function.

For fractals — the structure factor is

S(q)=S(q)=q """

q= 47”sin 9 1s the wave vector.

Since physical fractals have lower and upper bounds length scales
( A and 4, )

It follows that only for i—ﬂsina <(g< 1—”sin 9 , we obtain d;

+

Measurements of S(q) yields d;
Example: polymers.
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Percolation — fractal dimension

» The fractal dimension d; describes how the mass M(r) scales within a circle of radius r
M (r) [ Ar®

» The center of the circle on a site

» M(r) is averaged of many different circles

» Size of finite clusters (=holes) is & - correlation length

» At p—p,, &—>o0 ,and we have holes of all scales

» Above p,, ¢ is finite and self-similarity exists only for scales smaller than g
» Above & - the cluster is homogeneous!

» Demonstration of self-similarity for scales below & and homogeneous above &
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Percolation — Fractal Dimension

r ro &
r ro ¢

dy
» Mathematically: M (r)L {

Fractal dimension - Theory log M

» Relation between d.and 3 and v:

We can calculate: (d

r log & logr

» The probability that a site belongs to co-cluster is the ratio between the number of
sites on the oo-cluster (r ) and the total number of sites (r®)

d; —vd;
szi—d:»(p—pc)ﬂ ((p pc))_vd

= pf=-vd;+vd =

e

d, —d-~

v
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Infinite Percolation Cluster : )
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Fractal Dimension

| %
For d=2:4=5/36,v=4/3 = d, =2-=3_2 > _911 g9
6.4 ° 48 48
0.42
For d=3:4-042,v-08 = d,=3-2%21 255
0.88
For d>6:8=Lv=1/2 = d, —6-—=4
172

»d=4forall d>6
»d =6 is the upper critical dimension
»Same d. is for finite clustersat p=>p, and p<p,

Important relation:



