
Scaling Relations

To find ξ we have to average over all cluster sizes, 

In the earlier 3 scaling relations  did not appear. 

We have now six exponents: α, β, γ,   , and and another scaling relation:

For clusters with s sites, the rms distance between all pairs of sites on each 
cluster, averaged over all clusters of size s, is
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The factor      gives the same weight to each pair of sites.2s
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Scaling Relations

Close to     , the large clusters dominate the sum in     . 

Their mass s is related to      by                   ,
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To calculate the sums we transform them into integrals. Since 2 - is greater 
than -1, the integrations are over nonsingular integrands,

τ

)/(22 ~ σξ fd
cpp −−

1

fd
ν

σ
=

Thus we get a relation between    ,     andν τσ



From this follows:
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Thus, we have four relations between the six exponents

(α, β, γ,               ), and only two independent exponents.,  and σ τ ν



Slope= 2.05τ− = −



A second quantity which characterizes the size of a finite cluster is the mean 
square cluster radius    , defined as

Scaling Relations
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Here the same weight is given to each site of the cluster, and not to each 
pair of sites as in    . Following the treatment of as for     we obtain2ξ 2ξ



Correlation Length

or equivalently, in terms of ξ,

We show now that the correlation length ξ is the only characteristic length 
scale in percolation.

The argument                           of the scaling function  can be written 
as                  , and             becomes
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where                                 . These equations show that the correlation 
length    represents the only characteristic length scale near the percolation 
threshold: the cluster distribution function            depends on s via only the 
ratio             or, on replacing s by       , on only the ratio           .
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from which all relations between the exponents can be obtained.

The sum is transformed into the integral

Scaling Theory

The sums calculated so far are special cases of the more general expression
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As long as the integrand is nonsingular,                  the lower integration limit 
can be extended to zero, yielding
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For                  this procedure does not work, since the lower limit dominates the 
integral. In this case, one can consider derivatives of        with respect to           : 

where n is the smallest integer greater than                . The integrand is nonsingular 
and hence

Thus, we obtain by simple integration, up to lowest-order terms, 

for all k values.

Scaling Theory
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Scaling - Summary
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These three relations constitute, together with                 , four relations 
between the six exponents: Two independent exponents!

From these relations follow, 

This relation has been found useful by Toulouse (1974) to obtain the upper 
critical dimension dc for percolation. At (solved e.g., 
for CT) and hence dc=6.

The same argument leads to dc=4 in Ising systems, where β=1/2 at critical 
dimension.
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The correlation length ξ is the only characteristic length scale in percolation. 
Above pc , ξ is finite, and we expect different behavior on length scales   < ξ
and    > ξ. 

We present a scaling theory for the crossover behavior in several quantities 
such as     , M(  ), M(ℓ), R(ℓ). Assume the scaling ansatz

Scaling and Crossover Phenomena
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The scaling function G describes the crossover from   /ξ <<1 to   /ξ >>1. 
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We also determine how the mean mass M of the infinite cluster scales 
with    and ξ above pc. 

Since                             the mean mass of the infinite cluster scales as 
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