Scaling and Crossover Phenomena

The correlation length ξ is the only characteristic length scale in percolation. Above p_c , ξ is finite, and we expect different behavior on length scales $r < \xi$ and $r > \xi$.

We present a scaling theory for the crossover behavior in several quantities such as P_{∞} , M(r), $M(\ell)$, $R(\ell)$. Assume the scaling ansatz

$$P_{\infty} \sim (p - p_c)^{\beta} G(r/\xi) \sim \xi^{-\beta/\nu} G(r/\xi)$$

The scaling function G describes the crossover from $r/\xi \ll 1$ to $r/\xi \gg 1$. To obtain the expected results

$$P_{\infty} \sim (p - p_c)^{\beta}$$
 for $r \gg \xi$ and $P_{\infty} \sim r^{d_f} / r^d$ for $r \ll \xi$

in the two limits, we must require that

$$G(x) \sim \begin{cases} x^{d_f - d}, & x << 1\\ const, & x >> 1 \end{cases}$$

Thus, we find a unique function for $P_{\infty}(r,\xi)$ as a function of ξ and r

Scaling and Crossover Phenomena

We also determine how the mean mass *M* of the infinite cluster scales with *r* and ξ above *p*_c.

Since $M \sim r^d P_{\infty}(r,\xi)$, the mean mass of the infinite cluster scales as

$$M \sim r^{d-\beta/\nu} H(r/\xi), \quad H(x) = x^{\beta/\nu} G(x)$$

Since
$$G(x) \sim \begin{cases} x^{d_f - d}, & x << 1\\ const, & x >> 1 \end{cases}$$

we recover $M \sim r^{d_f}$ for $r < \xi$ and $M \sim r^d$ for $r > \xi$.

Finite Size Scaling

1

The dependence critical properties near p_c and p_c itself on the system size L

We had the scaling for
$$P_{\infty} \sim \xi^{-\beta/\nu} G(L/\xi) \sim \begin{cases} \xi^{-\beta/\nu} & L >> \xi \\ L^{-\beta/\nu} & L << \xi \end{cases}$$

We expect similar scaling for other properties: In general for property Y(L,p) we expect

$$Y(L, p) \sim \xi^{-y/\nu} F_1(L/\xi) \sim \begin{cases} \xi^{-y/\nu} & L >> \xi \\ L^{-y/\nu} & L << \xi \end{cases}$$

From which follows:

$$Y(L,p) \sim (p-p_c)^{y} F_2((p-p_c)L^{1/\nu}) \sim L^{-y/\nu} F_3((p-p_c)L^{1/\nu})$$

Finite Size Scaling

• If we calculate Y exactly at $p=p_c$ as a function of L we can get the exponent $y \not . v$

•Example $P_{\infty}(p_c,L) \sim L^{\beta/\nu}; M(p_c,L) \sim L^{d-\beta/\nu}$

• If *v* is known we find y.

Example d=1: we use
$$S(L, p) = L^{\gamma/\nu} f_s((p - p_c)L^{1/\nu})$$

We showed that for L $\rightarrow \infty$

The mean cluster size
$$S = \frac{1+p}{1-p} \sim \xi \Rightarrow \gamma = v$$

For p=1 and finite L, a single cluster exist S=L

Thus
$$\frac{\gamma}{v} = 1$$
 From which follows $\gamma = v = 1$

For L finite there is a finite probability to find a spanning cluster at any finite *p*.

E.g., in <u>d=1</u>: The probability to find a cluster of size L is $\phi_p(L) = p^L = e^{-L/\xi}$ Which is finite for all *p*!!

If L< ξ the prob. is greater than 1/e

L> ξ the prob. is smaller than 1/e

For L $\rightarrow \infty$ we expect Ø=0 below p_c and Ø=1 above p_c \rightarrow Step function

In d=1 \emptyset =0 for p<1 and \emptyset =1 for p=1.

p_c in Finite Systems

For L finite use expect:

Since $\phi_p(L)$ is approaching a step function for $L \to \infty$, we define an effective threshold p^* when $\phi_{p^*}(L) = \frac{1}{2}$. When $L \to \infty$ $p^*(L) \to p_c$

For d=1
$$\phi_{p^*}(L) = e^{-L/(1-p^*)} = \frac{1}{2}$$

 $\Rightarrow 1-p^* \equiv p_c - p^* \approx \frac{1}{L}$

* How p^* will behave in d- dimensional percolation?

p_c for Finite Systems

 $\phi_p(L)$: the probability for percolation in a d-dimensional lattice of size L with prob. p.

Since $\phi_p(\infty) = 1$ for p>p_c and $\phi_p(\infty) = 0$ for p<p_c, we expect for $\phi_p(L)$ y=0 (due to step function) and

$$\phi_p(L) = f\left((p - p_c)L^{1/\nu}\right) \equiv f(x)$$

f(x) increases from 0 to 1 for x increasing from $-\infty$ to ∞ The quantity $\frac{d\phi}{dp}$ is the probability that percolation occurs (for the first time) between *p* and *p*+*dp* per unit *dp*.

p_° in Finite Systems

The prob. that at p percolation occur, for the first time :

(prob. that p is p_c)

$$\frac{d\phi}{dp} = L^{1/\nu} f' \left((p - p_c) L^{1/\nu} \right)$$

For
$$L \rightarrow \infty$$
 $\frac{d\phi}{dp} \rightarrow \delta(p - p_c)$

The average critical concentration p as a function of L is given by

$$\overline{p} = \int_{0}^{1} p \frac{d\phi}{dp} dp$$

P can be easily calculated by simulation for different L.

From the form of
$$\frac{d\phi}{dp}$$
 and since $\int_{0}^{1} \frac{d\phi}{dp} dp = 1$ it follows
 $\overline{p} - p_{c} = C \cdot L^{-\frac{1}{\nu}}$ $C \equiv \int_{-\infty}^{\infty} zf'(z)dz$ $z \equiv (p - p_{c})L^{\frac{1}{\nu}}$

pc for Finite Systems $\overline{p} - p_c = CL^{-\frac{1}{\nu}}$ (1)

In some symmetrical cases such as triangular lattice f'(z) is symmetric around z=0 and thus $C \equiv \int_{-\infty}^{\infty} zf'(z)dz = 0$ and there is no correction! $p = p_c$

Eq. (1) helps to determine in simulations both p_c and \mathcal{V} Plot the measured p as a function of $L^{-1/\nu}$

Trying several values of v when v' = v one gets a straight line which also determine p_c

<u></u>_____

Example d=1:
$$\frac{d\phi}{dL} = Lp^{L-1}$$

$$\overline{p} = \frac{L}{L+1}$$

$$p_c - \overline{p} = 1 - \overline{p} = \frac{1}{L+1}$$
as in Eq.(1)

- The maximum of the mean finite clusters size S(p) approach to p_{c} as $L^{-\frac{1}{\nu}}$
- Eq.(1) is valid for every percolation property.
- The above conclusions are correct also for other critical phenomena used earlier.

```
p\text{-}p_c is replaced by T\text{-}T_c
```

The width of transition in finite systems

Define width of transition $\Delta(L,p)$

$$\Delta^{2} = \int (p - \overline{p})^{2} \frac{d\phi}{dp} dp = \overline{p^{2}} - \overline{p}^{2}$$

$$\propto L^{-\frac{2}{\nu}}$$

$$\Delta \sim L^{-\frac{1}{\nu}}$$
(2)

 Δ can be determined from MC simulations and thus evaluate v

Here the knowledge of p_c is not needed!

To determine p_c one can calculate

$$p - p_c \propto \Delta$$

Eq. (2) will be useful for optimization problems!!