
The correlation length ξ is the only characteristic length scale in percolation. 
Above pc , ξ is finite, and we expect different behavior on length scales   < ξ
and    > ξ. 

We present a scaling theory for the crossover behavior in several quantities 
such as     , M(  ), M(ℓ), R(ℓ). Assume the scaling ansatz

Scaling and Crossover Phenomena
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We also determine how the mean mass M of the infinite cluster scales 
with    and ξ above pc. 

Since                             the mean mass of the infinite cluster scales as 
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Finite Size Scaling
The dependence critical properties near pc and pc itself on the system size L
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We expect similar scaling for other properties:
In general for property Y(L,p) we expect 
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From which follows:
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Finite Size Scaling

• If we calculate Y exactly at p=pc as a  function of L we can get the 
exponent       .

•Example 

• If    is known we find y.

Example d=1: we use

We showed that for L ∞

The mean cluster size 

For p=1 and finite L, a single cluster exist S=L 

Thus 
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From which follows 1γ ν= =
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pc in Finite Systems

For L finite there is a finite probability to find a spanning cluster at any 
finite p.

E.g., in d=1: The probability to find a cluster of size L is                
Which is finite for all p!!

If   L<ξ the prob. is greater than

L>ξ the prob. is smaller than 

For L ∞ we expect Ø=0 below pc and Ø=1 above pc Step function

In d=1 Ø=0 for p<1 and Ø=1 for p=1.
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Since           is approaching a step function for L ∞, we define an

effective threshold       when                    . When L ∞

For d=1

* How      will behave in d- dimensional percolation? 
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For L finite use expect:
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pc for Finite Systems

: the probability for percolation in a d-dimensional lattice of size 
L with prob. p.

Since                  for p>pc and                   for p<pc, 

we expect for              y=0 (due to step function) and

)(Lp

f(x) increases from 0 to 1 for x increasing from -∞ to ∞

The quantity         is the probability that percolation occurs (for the 

first time) between p and p+dp per unit dp.
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pc in Finite Systems

The prob. that at p percolation occur, for the first time :

The average critical concentration    as a function of L is given by

can be easily calculated by simulation for different L.

From the form of        and since                        it follows
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pc for Finite Systems

In some symmetrical cases such as triangular lattice           is symmetric 

around z=0 and thus

and there is no correction!

Eq. (1) helps to determine in simulations both pc and  

Plot the measured      as a function of

Trying several values of     when           one gets a straight line which also 
determine pc

Example d=1: 1
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pc for Finite Systems

• Every                         leads to 

•Also                                                            leads to 

• The maximum of the mean finite clusters size S(p)  

approach to pc as 

• Eq.(1) is valid for every percolation property.

• The above conclusions are correct also for other critical      
phenomena used earlier. 

p-pc is replaced by T-Tc
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The width of transition in finite systems

Define width of transition Δ(L,p)
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Δ can be determined from MC simulations and thus evaluate 

Here the knowledge of pc is not needed! 

To determine pc one can calculate

v

cp p− ∝ Δ

Eq. (2) will be useful for optimization problems!!
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