Complex Networks

Structure, Robustness and Function

Examining important results and analytical techniques, this graduate-level textbook is a step-by-step presentation of the structure and function of complex networks.

From the stability of the Internet to efficient methods of immunizing populations, from epidemic spreading to how to efficiently search for individuals, this textbook explains the theoretical methods used, and the experimental and analytical results obtained. Ideal for graduate students and researchers entering this field, it gives detailed derivations of many results in complex networks theory. End-of-chapter review questions help students monitor their understanding of the materials presented.

Reuven Cohen is a Senior Lecturer in the Department of Mathematics at Bar-Ilan University, Israel. He has written many papers in the fields of complex networks, robot swarms, algorithms and communication networks, and has won several national and international prizes for his work.

Shlomo Havlin is a Professor in the Department of Physics at Bar-Ilan University, Israel. He is an Editor of several physics journals, has published over 600 articles in international journals, co-authored and co-edited 11 books, and won numerous awards for his work including the Weizmann Prize (2009) and the APS Lilienfeld Prize (2010).

Complex Networks

Structure, Robustness and Function

REUVEN COHEN

Bar-Ilan University

SHLOMO HAVLIN

Bar-Ilan University

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

> > Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521841566

© R. Cohen and S. Havlin 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN 978-0-521-84156-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

1 Introduction	page 1
1.1 Graph theory	4
1.2 Scale-free processes and fractal structures	4
PART I RANDOM NETWORK MODELS	
2 The Erdős-Rényi models	9
2.1 Erdős–Rényi graphs	9
2.2 Scale-free networks	10
2.3 Diameter and fractal dimensions	12
2.4 Random graphs as a model of real networks	13
2.5 Outlook and applications	14
3 Observations in real-world networks: the Internet, epidemics,	
proteins and DNA	16
3.1 Real-world complex networks	16
3.2 Properties of real-world networks	21
3.3 Betweenness centrality: what is your importance in the network?	27
3.4 Conclusions	29
4 Models for complex networks	31
4.1 Introduction	31
4.2 Introducing shortcuts: small-world networks	31
4.3 Random graphs with a given degree distribution	35
4.4 Introducing correlations	39
4.5 Randomly directed networks: modeling the WWW	39
4.6 Introducing geography: embedded scale-free lattices	41
4.7 Hierarchical and fractal networks	48
Exercises	49

vi	Contents	
	5 Growing network models: the Barabási–Albert model	
	and its variants	51
	5.1 The Barabási–Albert model	51
	5.2 Variants of the Barabási–Albert model	54
	5.3 Linearized chord diagram (LCD)	57
	5.4 Fitness models	59
	Exercises	62
	PART II STRUCTURE AND ROBUSTNESS OF COMPLEX NETWORKS	
	6 Distances in scale-free networks: the ultra small world	65
	6.1 Introduction	65
	6.2 Minimal distance networks	67
	6.3 Random scale-free networks	69
	6.4 Layer structure and Internet tomography – how far do your	
	emails travel?	72
	6.5 Discussion and conclusions	79
	Exercises	80
	7 Self-similarity in complex networks	81
	8 Distances in geographically embedded networks	88
	9 The structure of networks: the generating function method	91
	9.1 Introduction	91
	9.2 General results	91
	9.3 Scale-free networks	94
	Exercises	95
	10 Percolation on complex networks	97
	10.1 Introduction	97
	10.2 Random breakdown	98
	10.3 Intentional attack	101
	10.4 Critical exponents	105
	10.5 Percolation in networks with correlations	114
	10.6 <i>k</i> -core percolation: fault tolerant networks	116
	10.7 Conclusions	120
	Exercises	121

vii	Contents	
	11 Structure of random directed networks: the bow tie	123
	11.1 Introduction	123
	11.2 Structure	124
	11.3 The giant component	124
	11.4 Percolation in directed scale-free networks	125
	11.5 Critical exponents	128
	11.6 Summary	131
	Exercises	131
	12 Introducing weights: bandwidth allocation and	
	multimedia broadcasting	133
	12.1 Introduction	133
	12.2 Random weighted networks	134
	12.3 Correlated weighted networks	140
	12.4 Summary	142
	Exercises	142
	PART III NETWORK FUNCTION: DYNAMICS AND APPLICATIONS	
	13 Optimization of the network structure	145
	13.1 Introduction	145
	13.2 Optimization analysis	146
	13.3 General results	149
	13.4 Summary	152
	14 Epidemiological models	154
	14.1 Introduction	154
	14.2 Epidemic dynamics and epidemiological models	155
	Exercises	160
	15 Immunization	161
	15.1 Random immunization	161
	15.2 Targeted immunization: choosing the right people to immunize	162
	15.3 Acquaintance immunization: choosing the right people with	
	minimal information	163
	15.4 Numerical results for the SIR model	170
	15.5 Conclusion	170
	Exercises	172

viii	Contents	
	16 Thermodynamic models on networks	173
	16.1 Introduction	173
	16.2 The Ising model in complex networks	174
	16.3 Summary	179
	Exercises	180
	17 Spectral properties, transport, diffusion and dynamics	181
	17.1 The spectrum of the adjacency matrix	181
	17.2 The Laplacian	182
	17.3 The spectral gap and diffusion on graphs	184
	17.4 Traffic and self-similarity	191
	17.5 Summary	191
	Exercises	192
	18 Searching in networks	193
	18.1 Introduction	193
	18.2 Searching using degrees	193
	18.3 Searching in networks using shortcuts	195
	18.4 Summary	198
	Exercises	199
	19 Biological networks and network motifs	200
	19.1 Structure of metabolic networks	201
	19.2 Structure of genetic networks	201
	19.3 Network motifs	201
	19.4 Summary	206
	Appendix A: Probability theoretical methods	207
	Appendix B: Asymptotics and orders of magnitude	213
	Appendix C: Algorithms for network simulation and investigation	215
	References	222
	Index	236