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Measuring and optimizing the influence of nodes in big-data
online social networks are important for many practical appli-
cations, such as the viral marketing and the adoption of new
products. As the viral spreading on a social network is a global
process, it is commonly believed that measuring the influence
of nodes inevitably requires the knowledge of the entire net-
work. Using percolation theory, we show that the spreading
process displays a nucleation behavior: Once a piece of informa-
tion spreads from the seeds to more than a small characteristic
number of nodes, it reaches a point of no return and will
quickly reach the percolation cluster, regardless of the entire net-
work structure; otherwise the spreading will be contained locally.
Thus, we find that, without the knowledge of the entire net-
work, any node’s global influence can be accurately measured
using this characteristic number, which is independent of the
network size. This motivates an efficient algorithm with con-
stant time complexity on the long-standing problem of best seed
spreaders selection, with performance remarkably close to the
true optimum.
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Modern online social platforms are replacing traditional
media (1) for the spreading of information and commu-

nication of opinions (2–6). A common feature of today’s online
social networks (OSNs) is their gigantic sizes—for example,
as of the second quarter of 2016, there are about 1.5 billion
monthly active users on Facebook. Notably, multiplicative explo-
sions of some information may take place at a global scale
in such gigantic OSNs, which is the foundation of viral mar-
keting strategies (7). Because of this, quantification of viral
spreading is traditionally believed to need global network infor-
mation. Indeed, most measures, such as k-shell (2), degree
discount (8), cost-effective lazy forward (9), betweenness (10),
closeness (11), and Katz index (12), evaluate the influence of
nodes based on the knowledge of global network structures.
In general, these methods become impractical for giant OSNs,
because either the full network structural data are unavailable
or the computational time is nonscalable. On the other hand,
based on massive social experiments, Christakis and Fowler
(13, 14) proposed the so-called three degrees of influence
(TDI) theory, which states that any individual’s social influ-
ence ceases beyond three degrees (friends’ friends’ friends)
and therefore suggests the existence of an unknown yet local
effect. A recent study also shows that a local approximation
works fairly well for a qualitative global measure of collective
influence (4). The above situation reveals an apparent para-
dox, which inspires us to ask a fundamental question: Could
local network structure accurately determine the size of global
spreading?

Results
Here we recover a local characteristic infection size s∗ of
the spreading process. It determines the key influence size in

the stochastic spreading process described by the susceptible–
infected–recovered (SIR) family models (15–21), which well
describe the information spreading process in social media (22–
25). We find a ubiquitous and well-separated, bimodal behav-
ior in the supercritical spreading regime—the spreading either
extends globally, reaching a finite fraction of the total population
irrespective of the initial condition, or diminishes quickly beyond
the local characteristic infection size (Fig. 1 A and C). The global
and local phases are unambiguously separated. Using the map-
ping between the SIR family model and bond percolation (18,
26), we provide a concrete physical understanding of these two
well-separated phases. We show that the local phase can be used
to accurately quantify the node’s (or nodes’) spreading power
(Fig. 2A). In particular, the statistical properties of infected clus-
ter size distribution allow us to use solely local network structural
information for selecting the best seed spreaders in significantly
short constant time complexity.

Methods
Our study is carried out for an SIR spreading mechanism on connected net-
works. The central quantity of interest in the spreading model is the final
number of activated nodes or the spreading influence (17). A common defi-
nition of the spreading influence of node i is the expected number of active
nodes that originated from i,

S(i)≡
N∑

s=1

s g(i, s), [1]
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Fig. 1. Two phases phenomena. (A) Examples of simulated local (1, 3, 5) and viral (2, 4, 6) SIR spreadings in the NOLA Facebook network (β= 0.02, βc = 0.01).
We start the simulation from a randomly chosen node (red, k = 27). The active and nonactive nodes are colored in orange and white, respectively. (B) An
illustration of giant (Left) and finite (Right) clusters in a bond percolation process. (C) The spreading probability distribution g(i, s) (columns) is plotted
together with the cluster size distribution function p(s) (green line) obtained from percolation. Note that p(s) is the average of g(i, s) over all nodes. In this
example, we use the same seed node i as in A, but other randomly chosen nodes give similar bimodal distributions, with the same viral peak at s∞ (SI
Appendix, section II). (D) The finite part pf(s) (green circles) of p(s) is fitted to Eq. 5 (black solid line) to obtain the characteristic size s* = 32.9± 0.6 and
the exponent τ = 2.50. (D, Inset) The characteristic size s* is fitted to a power-law divergence near the critical point βc, with a non–mean-field exponent
σ= 1.05. The same network and the same β are used in A–D.

where g(i, s) is the probability that a total of s nodes are eventually activated
by node i in a network of N nodes, and the probability of an active node to
activate a neighboring node is β. In information spreading, an activated
node corresponds to a spreader. We find that the probability distribution
function g(i, s) has two prominent features: (i) It consists of two peaks,
which correspond to local and viral spreadings. The local peak is located
at small s, while the viral peak is centered at significantly larger s (Fig. 1
A and C). Furthermore, the viral peak is a δ-like function, whose location
is independent of node i and different stochastic realizations (SI Appendix,
section II). (ii) The two peaks are separated by a wide gap, which implies
that one may introduce a small filtering size,s*, to distinguish between the
two phases.

The statistical properties underlying these two features can be explored
and better understood using the framework of percolation theory. This can
be done through mapping the SIR process to bond percolation (18, 19),
where every link (bond) has a probability 1− β to be removed from the
network (see SI Appendix, section XII for the more general case where β is
link dependent). The final network forms many connected clusters of differ-
ent sizes. It has been proved that the probability distribution function g(i, s)
in Eq. 1 is exactly equivalent to the cluster size distribution function p(i, s),
where s is the size of the cluster that node i belongs to (18, 27, 28). Accord-
ing to percolation theory, a giant component of size s∞ emerges above the
percolation transition threshold βc (Fig. 1B), where p(i, s) is split into a finite
(nongiant) part pf(i, s) and a giant part p(i, s∞) (Fig. 1C). The size of s∞ is
proportional to N and depends on β. Because

∑
s pf(i, s)� s∞p(i, s∞), we

may approximate Eq. 1 as

S(i)≈ Ŝ(i)≡ s∞ p(i, s∞), [2]

where s∞ =
∑N

i=1 p(i, s∞). In other words, the spreading power of one
node is the product of the giant component size and the probability that
this node is in the giant component. In information spreading, a broader
type of definition for “influence” exists by including the nodes that are
linked to the spreaders but do not spread the information further, called
“listeners” (29). Since the underlying two-phase behavior is essentially the
same, the total number of listeners and spreaders increases monotonically
with the total number of spreaders approximated in our percolation-based
algorithm. This implies that maximizing the influence including listeners
is equivalent to the problem of maximizing the number of spreaders (SI
Appendix, section III).

In artificial random networks with structure purely determined by the
degree distributions, we can give the analytical solution for this influence
quantity Ŝ(i) in Eq. 1, with

p(i, s∞) = 1− (1− q)ki , [3]

where ki is the degree of node i, and s∞ = N
∑∞

k=1 P(k)[1− (1− q)k].
Here, q is the probability of a random link to be connected to the
giant component and is determined from the self-consistent equation
q = β

∑∞
k=1

kP(k)
〈k〉 [1− (1− q)k−1], with average degree 〈k〉 and arbitrary

degree distribution P(k) (30). The theoretical considerations and details
for undirected, directed, and degree–degree correlated are presented in SI
Appendix, sections IV and V.

For real networks whose structures are much more complex than random
networks, an exact solution to the spreading influence is not possible. But
the critical phenomenon and the statistical properties of the two phases
remain the same (Fig. 1C). We can leverage on these properties, in particular
the wide gap between these two phases to distinguish between viral and
local spreadings, and construct methods to estimate the spreading influence
of nodes in the network. In SIR processes, once the number of activated
nodes reaches a threshold parameter m, the simulation could be terminated
since this process is known to become most likely viral. We thus obtain a
second approximated form for the node spreading power—the truncated
spreading power,

S(i)≈ S̃(i)≡ s̃∞ p̃(i, s̃∞), [4]

where p̃(i, s̃∞)≡
∑N

s=m p(i, s), and s̃∞≡
∑N

i=1 p̃(i, s̃∞). It turns out that
percolation theory provides a fundamental insight into determining the
threshold value m. According to the theory, the distribution pf(i, s) has a

fast decay tail e−s/s*, where s* gives a characteristic size of the finite com-
ponents (27, 31). For any m≥ s*, the error introduced in S̃(i) by truncating
this tail is small [see Fig. 2A for a comparison between the real S(i) and S̃(i) in
real networks]. Fig. 2B shows that the relative error Er(i, m)≡ [S̃(i)− S(i)]/S(i)
decays quickly with m and becomes negligible for m≥ s* (see SI Appendix,
sections IV and V for a theoretical calculation of the error in random net-
works). Similar to the giant component size, the characteristic component
size s* is intrinsic to the whole network and independent of the seed node
i. Hence the characteristic size s* has an important implication: Once it is
determined either theoretically or numerically, it can be used as a threshold
for the parameter m. As long as m is chosen to be above s*, the truncated
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Fig. 2. Spreading power. (A) Comparison between the truncated spreading
power S̃(i) (Eq. 4) and the real exact spreading power S(i) (Eq. 1) in NOLA
Facebook and Macau Weibo (βc = 0.05) networks, where each point rep-
resents one node. (B) The m dependence of the relative error Er(i, m) of
nodes whose degrees are equal to the average degree 〈k〉, in the NOLA
Facebook (β= 0.02) network. (B, Inset) The m dependence of the relative
error Er(i, m) of nodes with different degrees. The relative error decreases
quickly with m and becomes smaller than 1% when m> s*. (C) Compar-
ison among the influence radius `*, the average distance of the farthest
nodes from the seed nodes `∞* , and the network diameter D in nine OSNs
and two random networks [an ER network with N = 50,000, 〈k〉= 10 and a
scale-free (SF) network with N = 50,000, P(k)∼ k−2.5]. We choose β in dif-
ferent networks such that the fraction of the giant component is the same;
i.e., s∞ = 0.3N (see SI Appendix, section I for the real networks description).
(D) The NOLA Facebook influence radius `* is smaller than both `∞* and D
for any β >βc.

spreading power S̃(i) is an excellent approximation for S(i), and its error is
well controlled (SI Appendix, section VI).

The average of the cluster size distribution, p(i, s), from seed node i gives
the global cluster distribution function p(s) = 1

N

∑N
i=1 p(i, s). Excluding the

giant component, its finite part pf(s) has the same tail as that of pf(i, s) (26,
27, 32) (Fig. 1D),

pf(s)∼ s−τe−s/s*, [5]

which can be used to obtain s* theoretically in random networks (27). For
example, in an Erdos–Renyi (ER) network, we obtain sER* = 1

β〈k〉−1−ln β−ln〈k〉
(SI Appendix, section IV). An expansion of this expression around the per-
colation transition βc gives the critical scaling s*∼ |β− βc|−1/σ , with the
mean-field exponent σ= 0.5. For real OSNs, s* is obtained by fitting the
simulation data to the exponential tail in Eq. 5 (Fig. 1D and SI Appendix,
section VII). Fig. 1D, Inset shows that s* in real Facebook OSN also satisfies
the critical power-law scaling.

To reveal the topological meaning of the characteristic size s*, we define
an influence hopping radius `* associated to s*. We perform SIR simula-
tions until s* nodes are activated and assign the maximum hopping distance
(shortest path) between the seed and active nodes, averaged over all real-
izations and nodes, to be the influence radius `*. For a typical β such that
s∞ = 0.3N, we find that `*∼ 3−4 in all OSNs studied, which is significantly
smaller than the average distance and diameter of the network as shown in
Fig. 2C. This result shows that if an SIR spreading is local, then it would van-
ish within three to four steps; otherwise, it will spread to about s∞ = 0.3N
nodes. Note that ` increases when β→ βc (Fig. 2D), whose scaling is dis-
cussed in SI Appendix, section IV. This behavior is analogous to a critical
phenomenon of a continuous phase transition: At the critical point, the

correlation length diverges, but as long as it moves beyond the critical point,
a characteristic scale appears.

The above analysis explains the following paradox: While it is shown that
the information spreading is in general a global process due to the viral
spreading in the supercritical phase, the influence of any node basically
depends only on its local network environment. While the computation time
for S(i) in Eq. 1 grows linearly with N, it is reduced to an N-independent
constant O(m) for the truncated spreading power S̃(i) in Eq. 4. An important
extension of this finding is that the method can be combined with many
search algorithms for detecting the best spreaders and reduce their time
complexity by one order of N.

Next, we aim to find the best M spreaders V = {v1, v2, · · ·, vM} from a
given setW of L candidates, to maximize their collective spreading power
S(V) =

∑N
s=1 s p(V , s), where p(V , s) is the probability that a total of s nodes

are activated by the selected spreaders in V . Because it is usually more cost-
effective to target a large set of less influential nodes, rather than a small
set of globally most influential nodes (33), we choose nodes with average
properties (around average degree) as candidates. In practice, it is usually
extremely difficult to obtain the full network structural information. There-
fore, unlike many other studies which select best seeds from the whole
network, we only focus on a subset of candidate nodes. Extending from
the formulation of a single node spreading power S̃(i), we introduce a trun-
cated collective spreading power S̃(V)≡ s̃∞ p̃(V , s̃∞), where p̃(V , s̃∞) is the
probability that at least one cluster of at least m nodes are activated by the
M seed spreaders. While the computation time for the collective influence
S(V) increases linearly with N given any V , it becomes N-independent for
the estimator S̃(V).

Now we demonstrate one example of how to improve other algorithms
and introduce quantification capabilities through the combination of our
approach with the natural greedy algorithm (NGA) (8, 17). We call this
algorithm the percolation-based greedy algorithm (PBGA): We (i) first find
the best spreader ṽ1 with the maximal individual spreading power based
on the estimator S̃(ṽ1), (ii) then fix ṽ1 and find the second best spreader
ṽ2 that maximizes the collective spreading power S̃(Ṽ) for Ṽ = {ṽ1, ṽ2},
and (iii) repeat this process M times until M spreaders Ṽ = {ṽ1, ṽ2, . . . ṽM}
are selected. As a greedy algorithm, the PBGA maximizes the marginal
gain in the objective function S̃(Ṽ) at each step. Note that replacing the
objective function by the real spreading power in the above procedure
would basically recover the NGA (see SI Appendix, section IX for more
details).

As expected, the simulation results show that the computational time
in terms of execution count of PBGA is independent of network size N
(Fig. 3). This reduction becomes significant for a worldwide online social
network with billions of nodes. In SI Appendix, Table S1, we compare
and summarize the theoretical time complexities of our PBGA, the NGA,
and other widely used algorithms, including brute-force search, genetic

Fig. 3. Algorithm time complexity. (A) Comparison of the computational
execution count of percolation-based greedy algorithm(PBGA) and natu-
ral greedy algorithm (NGA) (8) in ER networks with β= 0.2 (βc = 0.1). The
algorithms select the set of M = 10 most influential nodes from L = 1,000
candidates with degree at 〈k〉= 10. Unlike the NGA, PBGA’s computational
complexities are independent of network size. (B) Comparison of the com-
putational execution count (rescaled by 〈k〉 and m) of the same algorithms
in real OSNs (open symbols, from left to right: CA-GrQc, CA-HepTh, Macau
Weibo, Email-Enron, NOLA Facebook, DBLP, Delicious, QQ, and LiveJournal;
see SI Appendix, section I for the real networks description). The solid sym-
bols are values of extrapolated execution count based on the size of whole
Twitter and Facebook networks. The value of β is chosen such that the giant
component size is 30% of the network size; i.e., s∞ = 0.3N in each OSN.
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Fig. 4. Algorithm performance on real online social networks. For (A) NOLA Facebook (β= 0.012) and (B) Macau Weibo (β= 0.055) networks, we compare
the algorithm performance of the PBGA with that of other algorithms: brute-force search (BFS), degree discount heuristic (DDH) (8), eigenvector method
(EM), genetic algorithm (GA), maximum betweenness (MB) (10), maximum closeness (MC) (11), maximum degree (MD), maximum Katz (MK) index (12),
maximum k-shell (MKS) (2), NGA, and MCI (4). The candidate nodes are randomly selected from the nodes with median degree nodes: Degree is 10 for
nodes in Facebook and out-degree is 3 for nodes from Weibo. Since the candidate nodes have the same degree, the MD method is equivalent to the
random selection of seed nodes. S(V) is normalized by dividing the giant component size s∞. Here L = 100 candidates and M varies from 1 to 100. (A and B,
Insets) The regime 1≤M≤ 6 is enlarged, where the rigorous optimum obtained from BFS is available. (C) On the Facebook network, the combined rigorous
lower bound PRmin

comb and the approximated lower bound PRmin
approx are plotted together with the submodular lower bound PRmin

submod = 0.63 (17), as functions
of M. (D) The relative performance between the PBGA solution based on β= 0.02 (β= 0.05) and the PBGA solution based on the other β values, with both
performances Ṽ0 and Ṽβ estimated upon the same spreading rate β. The solid symbols (blue star and red diamond) label the performance of 1 when β= β0.
We see that as long as β >β0, the solution at β0 can be used at β since their performances are almost the same, as long as both β0 and β are larger than
the critical point βc ≈ 0.01.

algorithm, maximum degree, maximum k-shell (2), degree discount heuris-
tic (8), maximum betweenness (10), maximum closeness (11), maximum Katz
index (12), eigenvector method, and maximal collective influence (MCI) (4).
Although maximum degree, degree discount, and MCI have N-independent
theoretical computational complexities, the maximum degree and degree
discount performances are much less than that of the PBGA and MCI is
much slower than PBGA. This is because MCI needs the information of the
nodes up to a distance ` of the seed nodes. In real networks which are
small world, a small ` would lead to thousands or more nodes. On the other
hand, PBGA’s complexity depends on s*, which is independent of the small-
world effect. SI Appendix, Fig. S16 presents a graphical illustration of this
difference.

We quantify the algorithm performance by comparing the collective
spreading power S(V) of the solution set V from different algorithms (Fig. 4
A and B). Our results show that for the entire range of studied M, the three
algorithms, PBGA, NGA, and genetic algorithm (GA), have the best perfor-
mances. Remarkably, the three algorithms give solutions indistinguishable
from the true optimum obtained by the brute-force algorithm, when M is
small (Fig. 4 A and B, Insets). In particular, comparing the performance of the
PBGA and MCI in Fig. 5, we see that the PBGA significantly outperforms MCI
when the number M of seed nodes is small. This can be understood since
the original CI method (4) deals with best nodes for breaking down the net-
work, which are not necessarily the best spreaders. This is likely the reason
behind the relatively lower performance of MCI (more detailed discussion
in SI Appendix, section IX, B9). When M becomes large, the performance
difference diminishes, similar to the performance of any other algorithms
as seen in Fig. 4A. In fact, we conjecture that for any M, the solution of the
PBGA should be nearly optimal.

Another important aspect of this maximization problem is to have a
sense of how good the solution is compared with the true optimal solu-
tion V*, which is usually unknown (9, 17). We give two lower bounds of the
performance ratio PR≡ S(Ṽ)/S(V*) between the PBGA performance S(Ṽ)
and the exact optimal performance S(V*) (Fig. 4C): (i) a combined bound

PRmin
comb≡max{ p(Ṽ ,s∞ )∑

i∈U* p(i,s∞ ) , p(Ṽ ,s∞ )
p(W ,s∞ )}, where U* is the set of M nodes with

the maximum individual probability p(i, s∞) (it is rigorous for any networks),

and (ii) an approximated bound PRmin
approx≡

p(Ṽ ,s∞ )
1−

∏
i∈U*[1−p(i,s∞ )] that becomes

rigorous in random networks (SI Appendix, section X). The rigorous bound-

aries, p(Ṽ ,s∞ )∑
i∈U* p(i,s∞ ) and p(Ṽ ,s∞ )

p(W ,s∞ ) , work well in the small and large M limits,

respectively, where they both approach one, and the approximated bound
PRmin

approx≈ 1 for any M value considered. Considering the above analysis, we
argue that the PBGA gives a nearly optimized solution for an arbitrarily
given number M of spreaders.

In practical situations, the information spreading rate β is usually
unknown. However, our PBGA method could find close to optimal solutions
without knowing the exact β value, as long as the information spreading is
viral, i.e., a supercritical region with β >βc (see SI Appendix, section XI for
the nonviral subcritical regions β <βc). As illustrated in Fig. 4D, the solu-
tions found at an arbitrary spreading rate β0 perform nearly optimally at
higher spreading rate β >β0. Thus, without knowing the exact spreading
rate, one can use a spreading rate slightly above the critical value βc, such
that the solutions perform optimally at higher β values. On a related note,
it has been observed that information spreading could exhibit bursty behav-
iors with different spreading speeds (29). Such mechanism could be mapped
to dynamics having different beta values over the course of spreading,
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Fig. 5. Performance comparison between the PBGA and MCI. The vertical
axis is the ratio between the seeds’ influence of the PBGA and MCI. For a
small number M of seed nodes, the PBGA significantly outperforms MCI.
The difference diminishes as M increases, when both solutions approach the
theoretical maximum of giant component size. The simulation is carried out
on the Facebook network with β= 0.012.

possibly from small to large. They still belong to the SIR family. A more
detailed analysis of this process is presented in SI Appendix, section XII.

Summary
In this work, we show from first principles that any node’s
influence can be quantified purely from its local network envi-

ronment, based on the nature of the spreading dynamics. Our
approach is distinct from other local attempts, which usually
use some distance truncation strategies to approximate a rel-
ative global measure without the ability to quantify the actual
influence. Although our framework is demonstrated on the basic
SIR model, its applicability can be extended to several other
spreading models if the following two properties hold: (i) For
a collection of seed spreaders, the final steady states have two
different outcomes of being either a localized outbreak with a
small and finite number of infections or a global epidemic with
the infectious/recovered population being proportional to the
network size. (ii) When it is in the global outbreak, the size of
the influence does not correlate with that of the initial spreader.
See SI Appendix, section XII for discussions on a more gen-
eral family of SIR models as well as for more complex models
that include stiflers (34) and the susceptible–infected–susceptible
model (22).
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17. Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a
social network. Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (ACM, New York), pp 137–146.

18. Newman MEJ (2002) Spread of epidemic disease on networks. Phys Rev E 66:016128.
19. Castellano C, Fortunato S, Loreto V (2009) Statistical physics of social dynamics. Rev

Mod Phys 81:591–646.
20. Meloni S, Arenas A, Moreno Y (2009) Traffic-driven epidemic spreading in finite-size

scale-free networks. Proc Natl Acad Sci USA 106:16897–16902.
21. Eubank S, et al. (2004) Modelling disease outbreaks in realistic urban social networks.

Nature 429:180–184.
22. Pastor-Satorras R, Castellano C, Mieghem PV, Vespignani A (2015) Epidemic processes

in complex networks. Rev Mod Phys 87:925–979.
23. Daley DJ, Kendall DG (1964) Epidemics and rumours. Nature 204:1118.
24. Iribarren JL, Moro E (2011) Branching dynamics of viral information spreading. Phys

Rev E 84:046116.
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