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We study the cascading failures in a system composed of two interdependent square lattice networks A

and B placed on the same Cartesian plane, where each node in network A depends on a node in network B

randomly chosen within a certain distance r from the corresponding node in network A and vice versa. Our

results suggest that percolation for small r below rmax � 8 (lattice units) is a second-order transition, and for

larger r is a first-order transition. For r < rmax, the critical threshold increases linearly with r from 0.593 at

r ¼ 0 and reaches a maximum, 0.738 for r ¼ rmax, and then gradually decreases to 0.683 for r ¼ 1. Our

analytical considerations are in good agreement with simulations. Our study suggests that interdependent

infrastructures embedded in Euclidean space become most vulnerable when the distance between inter-

dependent nodes is in the intermediate range, which is much smaller than the size of the system.
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Most previous studies of the robustness of interdepend-
ent networks [1–19] focused on random networks in which
space restrictions are not considered. Most real networks
are embedded either in two-dimensional or in three-
dimensional space, and the nodes in each network might
be interdependent with nodes in other networks. One ex-
ample is a computer in a computer network, which is
dependent for power upon the functioning of a local power
grid network where both networks are spatially embedded.
Another example is the way the worldwide network of
seaports embedded in the two-dimensional surface of the
earth is interdependent with power grid networks em-
bedded on the same surface. A seaport needs electricity
from a nearby power station to operate, and a power station
needs fuel supplied through a nearby seaport to operate.
Thus, the failure of a power station in a power grid network
will cause a failure in a nearby seaport and vice versa.
Space constraints, such as the network dimensionality [20],
influence the network properties dramatically, and thus the
question about the resilience of interdependent spatial net-
works is of much interest.

The case of interdependent spatially embedded net-
works is significantly different from interdependent ran-
dom networks in two ways: (i) within each network, nodes
are connected only to the nodes in their spatial vicinity,
while in the randomly connected networks, the concept of
spatial vicinity is not defined; (ii) the dependency links
establishing the interdependence between the networks
might not be random but may have a typical length r. To
understand how these space constraints affect the resil-
iency of interdependent networks, we study the mutual
percolation of a system composed of two interdependent,
two-dimensional lattices A and B, where a node Ai can
connect to its dependent node Bj only within distance r

from Ai (see Fig. 1). Since a node can be functional only if
it is connected to the network, the resilience can be mea-
sured, using percolation theory, as the size of the remaining
giant component after an attack on the network.
Our model consists of two identical square lattices A and

B of linear size L and N ¼ L2 nodes with periodic bound-
ary conditions. In each lattice, each node has two types of
links: connectivity links and dependency links. Each node
is connected to its four nearest neighbors within the same
lattice via connectivity links. Also, a node Ai located at
(xi, yi) in lattice A is connected with one and only one
node Bj located at (xj, yj) in lattice B via a bidirectional

FIG. 1. Two square lattices A and B where in each lattice every
node has two types of links: connectivity links and dependency
links. Every node is initially connected to its four nearest
neighbors within the same lattice via connectivity links. Also,
each node Ai in lattice A depends on one and only one node Bj in

lattice B via a dependency link (and vice versa), with the only
constraint that jxi � xjj � r and jyi � yjj � r. If node Ai fails,

then node Bj fails. If node Bj fails, then node Ai fails. Network A

is shifted vertically for clarity.
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dependency link, with the only constraint that jxi � xjj � r

and jyi�yjj� r (Fig. 1). The parameter r represents the

maximum distance a node in one network gets support from
a node in another network.

Although real networks embedded in two-dimensional
space may have more complex structures than the square
lattice, our model can serve as a benchmark for more
complex situations. Moreover, it is known that the perco-
lation transition in two dimensions has universal scaling
behavior which does not depend on the coordination num-
ber and is the same for lattice and off-lattice models, as
long as the links have a finite characteristic length. Hence,
mutual percolation in two dimensions should not depend
on the particular realization of the model [21].

The difference between connectivity and dependency
links is that for connectivity links, a node fails only when
it does not belong to the giant cluster of its network, while
for dependency links, a node fails once the node on which
it depends in the other network (connected via a depen-
dency link) fails. An initial random attack destroys a
fraction 1� p of nodes in network A. This causes a certain
number of nodes to disconnect from the giant component
of network A so that only a fraction of nodes p1 ¼ P1ðpÞ
remains functional. Here P1ðpÞ is the order parameter
of conventional percolation in a square lattice [21]. The
removal of nodes in network A causes the removal of the
dependent nodes in network B. As a result, only a fraction
P1ðp1Þ of nodes in network B remains functional. This
produces additional damage in network A and so on. The
cascading failure process stops when no further damage
propagates between the lattices. If the length of dependen-
cy links is totally random (r ¼ L), the formalism devel-
oped in Ref. [1] can be applied. This is because at the ith
stage of the cascade the resulting giant component P1ðpiÞ
is the order parameter of conventional percolation com-
puted for a random fraction of nodes pi surviving after all
the nodes in one network that depend on the nonfunctional
nodes of the other network are removed. Accordingly, we
can represent the cascading failure by the recursive equa-
tions for the survived fraction pi,

p0 ¼ p;
p1 ¼ p

p0
P1ðp0Þ ¼ P1ðpÞ;

..

.

pi ¼ p
pi�1

P1ðpi�1Þ:
(1)

The recursive steps of Eq. (1), representing the cascading
failures in the giant component shown in Fig. 2, are in good
agreement with simulations. In the limit i ! 1, Eq. (1)
yields the equation for the mutual giant component at
steady state, � � P1ðp1Þ,

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pP1ðxÞ

q
; (2)

where x � p1. Using the form of P1ðxÞ for conventional
percolation obtained from numerical simulations, Eq. (2)
can be solved graphically as shown in the inset of Fig. 3.
Due to the specific shape of the functionP1ðpÞ [see Fig. 3],
(P1ðpÞ<p, limp!1P1=p ¼ 1, limp!pc

P1ðpÞ ¼ 0, and

pc ¼ 0:5927 for square lattice), it does not have solutions
for a small p except for the trivial case x ¼ 0.
Figure 3 shows the numerical solution of Eq. (2), which

is in good agreement with simulations and compares it with
P1ðpÞ of a single network. The critical p for which the
nontrivial solution ceases to exist, p � p

�
c , corresponds to

the case when the right-hand side of Eq. (2) becomes
tangential at the point of their intersection x ¼ xc to its
left-hand side (Fig. 3 inset). Hence,

P01ðxcÞxc ¼ 2P1ðxcÞ; (3)

from which the critical p for mutual percolation is

p�
c ¼ x2c=P1ðxcÞ: (4)

Numerical solutions of Eqs. (3) and (4) yield p�
c ¼ 0:683,

xc ¼ 0:641, and P1ðxcÞ ¼ 0:602, in good agreement with
simulations of the mutual percolation on lattices for r ¼ L
as seen in Fig. 3. Figure 3 shows a discontinuity in the
order parameter of mutual percolation �ðpÞ ¼ P1ðpÞ at
p ¼ p

�
c , which drops from �ðpÞ ¼ 0:602 to zero for

p < p
�
c , characteristic of a first-order transition.

Next, we study the mutual percolation for different
dependency lengths r. An infinite coupling distance
r ¼ 1 corresponds to the scenario of random dependency
links between the lattices discussed above. For r ¼ 0,
every failed node in network A leads to removal of a
node in network B in the same location. Thus, the perco-
lation clusters in the two lattices are identical and there is
no feedback failure in network A. Therefore, the case of
r ¼ 0 is identical to the case of conventional percolation
in noncoupled lattices. Figures 4(a) and 4(b) show the
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FIG. 2 (color online). Giant component size P1 as a function
of step i at the first-order transition regime at p ¼ 0:6825 for
r ¼ L ¼ 1000. The simulation results (solid lines) are in good
agreement with the theoretical results (dots). The value of p is
close to the percolation threshold p

�
c ¼ 0:6827.
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structure of the giant component just above p
�
c for very

small r (few lattice units) and for r ¼ L, respectively.
For small r, the structure is similar to the heteroge-
neous fractal-like giant component of a single network
[21]. In contrast, for r of the order of L, the giant
component is homogeneous and almost compact
[see Fig. 4(b)] but, surprisingly, on the verge of a
sudden collapse as a first-order transition. For inter-
mediate values of r, the collapse occurs in a very
different way. Figures 4(c)–4(e) show for intermediate
values of r (discussed below) that the initial cascade of
failures is localized to a region of size r [Fig. 4(c)].
Because of local density fluctuations, the effective
fraction of nodes p in one region can be smaller than
the overall average, and therefore small clusters at this
region become isolated from the giant component and
fail even when the entire lattice is still connected. As
soon as a region of size r fails, the system becomes
unstable: the interface of this bubble starts to expand
and soon engulfs the entire system [Figs. 4(d) and 4(e)].
This local effect of a propagating interface owing to
finite dependency links increases the system vulnerabil-
ity compared to the case of random dependency links.
Thus we expect p

�
c ðrÞ> p

�
c ð1Þ found for random de-

pendency links. The process of formation of the critical
bubble is similar to nucleation near the gas-liquid

spinodal [22]. Thus, it is important to understand the
propagation of a flat interface, which would correspond
to gas-liquid coexistence.
In order to systematically study the conditions for propa-

gation of a flat interface, we study the two interdependent
networks with an empty gap on one edge in lattice A. We
construct the two networks with the length of interdepend-
ent links less than or equal to r (see Fig. 1). The only
difference from our original system is that after random
removal of a certain fraction of nodes 1� p, we eliminate
the nodes in lattice A with coordinates yi � r to create an
artificial flat interface. Simulations show that the flat inter-
face freely propagates and that the system totally collapses

if p < pf
cðrÞ, where pf

cðrÞ is approximately a linear func-

tion of r with pf
cð0Þ ¼ pc ¼ 0:5927, pf

cðrfÞ ¼ 1, and rf ffi
38. For r > rf, the interface freely propagates through the

system even when the lattice is completely intact. This
happens because the removed nodes of lattice A above the
interface eliminate half of the nodes in lattice Bwith yj � r.

Thus, the effective concentration of nodes in lattice B
linearly changes from p at distance r from the interface to
p=2 right at the interface. This system is analogous to
percolation in diffusion fronts studied by Sapoval et al.
[23]. There is thus a certain distance from the interface
rc ¼ rð2pc � pÞ=p that corresponds to the critical thresh-
old of conventional percolation. If rc is much larger than the
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FIG. 3 (color online). The giant component size P1 as a
function of remaining fraction of nodes p. The solid curve is
for conventional percolation on a single square lattice, which
also describes the limiting case of r ¼ 0. The solid curve is
obtained by numerical simulations on N ¼ 4000� 4000 lattice
sites with periodic boundary conditions and averaged over 100
realizations. The dash curve represents the theoretical result
�ðpÞ for two interdependent lattice networks with r ¼ L given
by Eq. (2). The simulation results (dots) are for two interde-
pendent lattice networks with N ¼ 1000� 1000 and r ¼ L.
Inset: A schematic graphical solution of Eq. (2) is shown. The

curves are
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pP1ðxÞ

p
for different p and the solution of Eq. (2) is

given by the intersection of the solid curves and the straight line
y ¼ x. The critical p ¼ p

�
c corresponds to the case when the

solid curve is tangential to the straight line y ¼ x. Numerical
solutions of Eqs. (3) and (4) yield xc ¼ 0:641, P1ðxcÞ ¼ 0:602,
and p�

c ¼ 0:6827.

FIG. 4. Three different typical behaviors of interdependent
lattices near criticality. Pictures of stable mutual giant compo-
nent at criticality of two interdependent lattices (N ¼ 1000�
1000) after cascading failures initiated by a random removal of
1� p of the nodes for (a) r ¼ 4 and p ¼ 0:680 and for
(b) r ¼ 1000 and p ¼ 0:683. The dynamics of a growing bubble
(explained in the text) for r ¼ 20 is demonstrated by three
snapshots, (c), (d), and (e), of the nonstable giant component
of the interdependent lattices (N ¼ 500� 500) during the cas-
cading process initiated with p ¼ 0:700.
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typical cluster size in the range between pc and p=2, all
the nodes in lattice B in this layer will be disconnected and
hence the interface will propagate freely. The interface can
stop if rc ¼ �ðp=2Þ, i.e., the connectedness correlation
length [21] when p=2 is less than pc. We estimate the

critical concentration pf
c from the equation �ðpf

c=2Þ ¼
rð2pc � pf

cÞ=pf
c , which yields rf ¼ �ð1=2Þ=ð2pc � 1Þ ¼

41 for the case p ¼ 1, where �ð1=2Þ ¼ 7:6 obtained by
numerical simulations of conventional percolation on a
single lattice. This prediction agrees well with simulations
(rf ffi 38). The propagation of the flat interface close to

pf
cðrÞ is similar to invasion percolation, which is a fractal

process with vanishing number of active sites [21], and the

average interface velocity approaches zero at pf
cðrÞ, a char-

acteristic of a second-order transition. Thus, the system
completely collapses when (1) a flat interface exists and

(2) p < pf
c . The conditions for flat interface propagation,

pf
cðrÞ, were obtained for the artificial model where the flat

interface is initially created. However, when the system is
initiated by a spatially random removal, a flat interface may
be created by random fluctuations over the lattice.

What can we learn from the flat interface behavior on
our original system with only initial random failures?
When r is large, in the absence of an artificial flat interface,
the system does not collapse but rather stays in a meta-

stable state where p�
c < p < pf

c . As soon as p ¼ p�
c , a

hole of size r is spontaneously formed in a low p regime,
and its interface freely propagates through the system

because p is already below the critical point pf
c of the

interface propagation. As a result, the interface will
completely wipe out the remaining giant component
[see Fig. 4(c)–4(e)]. Thus, for large r, the transition is first

order, meaning it is all or nothing, a transition similar to
spontaneous nucleation. At these conditions, the removal
of even a single additional node may cause the disintegra-
tion of the entire system (Fig. 5).
The dynamics of the system becomes completely differ-

ent for small r. In this case, when pf
c is small, the character-

istic size of the holes �h in the percolation cluster is
sufficiently large, and there are many holes of size

�hðpf
cÞ> r. Thus, the flat interface is formed before it begins

to propagate. Once p approaches pf
c from above, the inter-

face begins to propagate simultaneously from all large holes
in the system. It can spontaneously stop at any stage of the
cascade, leaving any number of sites in the mutual giant
component (Fig. 5). The average number of sites in the giant

componentwill approach zero asp approachespf
c , subject to

strong finite-size effects as in conventional percolation. So

for small r, the transition is a second-order, and p
�
c ðrÞ ¼ pf

c

linearly increases with r (Fig. 6).

The inset of Fig. 6 shows that at r ¼ rmax, �hðpf
cðrÞÞ ¼

r � 8, and a flat interfacewill not spontaneously form. Thus

p must be below pf
cðrÞ in order for the hole of size r to

appear in the system. Once a single hole of such size
appears, the flat interface will freely propagate below its
critical threshold, wiping out the entire coupled network

system, as in a first-order transition. Note that pf
cðrmaxÞ �

0:738> p
�
c ¼ 0:6827. Thus as r increases,p

�
c ðrÞ gradually

decreases (Fig. 6). This gradual decrease is caused by two
factors. When r increases in the vicinity of rmax, smaller
and smaller p is needed in order to create holes of size r.
When p becomes close to p

�
c , the system begins to undergo
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FIG. 5. The fraction of nodes in the giant component as a
function of nodes survived after the initial attack. We perform
the simulations by gradually removing additional nodes. For
r ¼ 6, the decrease of giant component occurs in multiple steps,
characteristic of a second-order transition. For r ¼ 8 and r ¼ 16,
the giant component may completely collapse by removal of
even a single additional node, characteristic of a first-order
transition.

0 10 20 30 40 50 60 70 80 90 100
r

0.6

0.65

0.7

pµ c

0.6 0.65 0.7 0.75 0.8
p

0

20

40

ξ h

hole diameter

r=8

FIG. 6 (color online). The critical p
�
c as a function of inter-

dependent distance r. The change from second to first order
transition occurs at rmax � 8. The critical p�

c of mutual perco-
lation linearly increases for r < rmax following the percolation
threshold for flat interface and then gradually decreases to p

�
c ¼

0:683 at r ¼ 1, which is in good agreement with the theoretical
results. Inset: Diameter of the hole size � as a function of r on
conventional percolation on a single lattice network. �h �
rmax ¼ 8 at p ¼ 0:744 is in good agreement with the simulation.
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local cascades of failures if the average density in the region
of size r falls below p

�
c . The average over r2 nodes of this

region can deviate from the mean p on the order of a

standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞp

=r, thus making the disinte-
gration possible if p ¼ p�

c ðrÞ � p�
c þ C=r, where C is a

constant. Note thatp�
c ðrÞ has a tendency to increasewith the

system size. The larger the system, the more likely a suffi-
ciently large hole or a sufficiently large fluctuation in local
density will lead to a local cascade of failures.

In summary, our analysis suggests that the change from
second-order to first-order transition occurs at rmax � 8.
Note that Ref. [24] found a second-order transition for
r ¼ 0 on two interdependent lattice networks. Our studies
show rich phase transition phenomena when the length of
the dependency links r changes. The critical p of mutual
percolation increases linearly with r in the range of
r < rmax and is characterized by a second-order transition.
For r � rmax, the cascading failures suggest a first-order
transition and the critical p gradually decreases to p

�
c ¼

0:683 for r ! 1.
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