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Abstract—Objective: While most studies on Central Sleep Ap-
nea (CSA) have focused on breathing and metabolic disorders, the
neuronal dysfunction that causes CSA remains largely unknown.
Here, we investigate the underlying neuronal mechanism of
CSA Dby studying the sleep-wake dynamics as derived from
hypnograms. Methods: We analyze sleep data of seven groups
of subjects: healthy adults (n=48), adults with obstructive sleep
apnea (OSA) (n=48), adults with CSA (n=25), healthy children
(n=40), children with OSA (n=18), children with CSA (n=73)
and CSA children treated with CPAP (n=10). We calculate
sleep-wake parameters based on the probability distributions
of wake-bout durations and sleep-bout durations. We compare
these parameters with results obtained from a neuronal model
that simulates the interplay between sleep- and wake-promoting
neurons. Results: We find that sleep arousals of CSA patients
show a characteristic time scale (i.e., exponential distribution) in
contrast to the scale-invariant (i.e., power-law) distribution that
has been reported for arousals in healthy sleep. Furthermore,
we show that this change in arousal statistics is caused by
triggering more arousals of similar durations, which through our
model can be related to a higher excitability threshold in sleep-
promoting neurons in CSA patients. Conclusions: We propose
a neuronal mechanism to shed light on CSA pathophysiology
and a method to discriminate between CSA and OSA. We show
that higher neuronal excitability thresholds can lead to complex
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reorganization of sleep-wake dynamics. Significance: The derived
sleep parameters enable a more specific evaluation of CSA
severity and can be used for CSA diagnosis and monitor CSA
treatment.

Index Terms—central sleep apnea, excitability threshold, expo-
nential distribution, power-law distribution, sleep arousals, sleep
modeling, sleep-wake dynamics, wake-bout durations

I. INTRODUCTION

The first systematic description of sleep apnea as cessation
of airflow through nose and mouth was provided by Gas-
taut et al. in 1966 [1]. However, sleep apnea patients are
mentioned much earlier in the literature such as in Dickens’
“The Posthumous Papers of the Pickwick Club” (1837) and
in Shakespeare’s “King Henry IV Part I” (1597), indicating
that sleep apnea is a common clinical disorder with long
history. Nowadays, about 3-27% of the general population
is affected by sleep apnea (depending on age, gender and
definition of criteria [2], [3]). Sleep apnea as the most common
form of sleep-related breathing disorders, greatly impairs daily
function and quality of life, and is a major contributor to
cardiac, cerebrovascular, and metabolic disorders as well as to
premature death [3]. The main characteristics of sleep apnea,
breathing disturbances, pause or shallow breathing during
sleep, are caused by obstruction of the upper airways and
a subsequent blockage of airflow (obstructive sleep apnea,
OSA) or by lack of respiratory drive (central sleep apnea,
CSA). While the origins of OSA are well understood, the
mechanisms leading to CSA have not been fully described
yet [4], although CSA is very common in elderly subjects and
present in approximately 25% to 40% of patients with chronic
heart failure [5].

The control of respiration requires the coordinated activity
among several neuronal centers in the brainstem [6]. During
sleep, respiratory drive is dominated by changes in Pco,
and spontaneous nocturnal breathing is maintained when the
arterial Pco, is higher than the apneic Pco, threshold. In
contrast, if the apneic Pco, threshold is above the arterial
Pco,. inspiration does not occur resulting in CSA that lasts
until either arterial Pco, increases above the apneic threshold
or an arousal occurs [7]. While in many cases the exact
cause of CSA is not known, it can often result from medical
conditions such as stroke and congestive heart failure that
damage neuronal centers in the lower brainstem or from
high altitude and various drugs [4], [8]. Interestingly, CO5
inhalation efficiently reduces CSA events probably due to
a widening of the difference between Pco, and the apneic
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threshold [9], [10]. However, treatment with inspired COq
does not improve sleep quality nor does it reduce the arousal
index [9]-[11].

In this paper, we hypothesize that CSA is not only caused
by malfunctioning of the respiratory centers (and improper re-
sponse to changing Pco, levels) but might also lead to higher
excitability threshold of sleep-promoting neurons (SPN), sim-
ilar to what has been found for hippocampal neurons treated
with cyclic hypoxia [12] and for GABAergic SNr neurons
in hypoxic conditions [13]. We propose a mechanistic model
to simulate brief arousals during sleep, and we show how
a higher excitability threshold of SPN changes the arousal
characteristics of CSA patients from a scale-invariant power-
law distribution to an exponential distribution with charac-
teristic time scale. As was shown previously, healthy sleep
is characterized by many arousals throughout the night and
their durations follow a power-law distribution [14], [15]
(Fig. 1), which is consistently observed for several mammalian
species [16] and related to different stages of maturation [17]-
[19]. This power-law behavior can be explained by a sleep-
restoring current [14], [20] that emerges during arousals in
order to keep them short and maintain sleep. In CSA patients,
however, the onset of the sleep-restoring current may be
delayed (due to a higher excitability threshold of SPN), and
therefore wake bout durations in CSA follow an exponential
distribution rather than a power-law.

The model that we propose here to simulate arousal statistics
in CSA, builds upon the intrinsic noise of wake-promoting
neurons (WPN) located in several neuronal groups in the
brain stem as an important factor for arousal generation [20].
While for healthy sleep regulation, cortical excitation (which
triggers an arousal) and SPN excitation (which in turn triggers
the inhibitory current) occur simultaneously, for CSA there is
a delay between them due to a difference ("GAP’) in their
excitability thresholds:

GAP = ASPN - Acortexv (1)

where Agpn and A q;tex are the excitability thresholds of SPN
and typical cortical neurons, respectively. According to our
model (schematically shown in Fig. 2), for healthy subjects as
well as for CSA patients, arousals occur when the integrated
neuronal voltage of WPN exceeds V = 0 mV (Fig. 2, red
pathway). We set the threshold potential equal to zero such that
for V' > 0 arousal/nocturnal wakefulness occurs and for V' < 0
sleep is preserved (see also Methods and Materials). While for
healthy subjects the sleep restoring current becomes effective
if V> 0, for CSA patients the sleep restoring current appears
only for V> GAP (Fig. 2, blue pathway). Therefore, if WPN
voltage for CSA patients is between 0 < V' < GAP, arousals
are generated without attenuating current, and we expect such
arousals to be similar in their statistics as sleep bout durations
(ie., if —A <V < 0) and follow an exponential distribution
instead of a power-law.

We compare the results of our model simulations with em-
pirical analysis of data from adults as well as children (Fig. 4).
It is well known that premature babies are especially affected
by CSA because of immaturity of respiratory centers in the
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Fig. 1. Frequent short arousals during sleep and probability distributions
of wake and sleep bout durations of healthy adults. a) Healthy sleep
is characterized by frequent arousals and sleep-stage transitions throughout
the night (shown is the full-night hypnogram of a healthy subject). b)
Magnification of the area marked by the red box shown in a), and definition
of sleep bout durations Ats and wake bout durations At,,. Panel b) is
obtained from panel a) by grouping the five sleep stages into a single sleep
state. Cumulative CDF of sleep bout durations (filled circles) and wake bout
durations (open circles) for the pooled data of 48 healthy adults on c) a
log-linear plot and d) a log-log plot. Sleep bout durations typically show
an exponential distribution with characteristic time 7 as demonstrated by the
straight line in panel c¢), whereas a straight line in panel d) suggests that wake
bout durations follow a power law with exponent cv. We calculate o and 7 by
maximum likelihood estimation (MLE) [20], [21] that does not dependent
on the choice of binning. The Akaike weights [22] for each distribution
also indicate that sleep bout durations are best represented by an exponential
distribution (exponential Akaike weights of ~1 vs. power-law Akaike weights
of < 10739), and wake bout durations by a power-law (power-law Akaike
weights of 0.971 vs. exponential Akaike weights of 0.029).

brain stem (”Apnea of Prematurity”) [24], and therefore CSA
in healthy young children can be considered as a physiological
process, which is resolved during maturation (usually after the
age of two years) [4], [25]. However, the group of children we
study in this paper has an age range between 3 to 12 years,
and CSA in these children is more likely to be of pathological
origin. We also study CSA in a group of adults (mean age:
~50 years), and we compare CSA children and CSA adults
to age-matched groups of healthy controls and subjects with
OSA. Moreover, we introduce a novel diagnostic measure of
CSA severity that is based on the distribution of wake bout
durations.

II. METHODS AND MATERIALS

A. Modeling arousability in Central Sleep Apnea (CSA)

Recently, we have shown that the integrated neuronal volt-
age fluctuations of wake promoting neurons (WPN) during
consolidated sleep can be modeled by [20]

V=-A
dV = o - dw

—-A>V
—A <V <0,

for (2a)

for (2b)
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Fig. 2. Mechanistic model of central sleep apnea (CSA). The superposition
of uncorrelated neuronal noise currents from a group of wake-promoting
neurons (WPN) located in the upper brain stem can be modeled as a Wiener
process [23]. WPN voltage occasionally exceeds the excitability threshold
and via the ascending arousal pathway (drawn schematically in red) can
trigger an arousal in the cortex [20]. In order that arousals are kept short,
there exists an inhibitory current I = b/(V + 1) (schematically shown by
blue lines on the left hand side) due to the excitation of sleep promoting
neurons (SPN) located predominantly in the ventrolateral preoptic nucleus
(VLPO). In healthy sleep, cortical excitation and triggering of the inhibitory
current happen simultaneously. However, we hypothesize that for patients
with central sleep apnea (CSA) there is a delay between the excitation of
the cortical neurons and VLPO neurons because of a difference in their
excitability thresholds denoted by GAP. For healthy subjects and even patients
with obstructive sleep apnea (OSA), GAP = 0. In contrast, for CSA patients
we assume GAP > 0, which yields more arousals of intermediate duration
(Appendix Fig. Al). This is because for WPN voltage between 0 and GAP
there is no sleep-restoring current I that will attenuate arousals (e.g., Arousal
1). Nevertheless, if WPN voltage exceeds the GAP, there is a sleep-restoring
current with / > O that counteracts arousal formation (see upper panel during
Arousal 2).

whereas during nocturnal arousals/wake

b

W=y

-dt + o - dw, for V > 0. 3)

We set the threshold potential equal to zero so that
arousal/nocturnal wakefulness are characterized by V' > 0 and
for sleep V' < 0 (see also Fig. 3). The lowest possible voltage
of neurons is given by the Nernst potential of potassium
ions so that the parameter —A is the relative difference
between threshold potential and potassium Nernst potential
(A can also be related to sleep depth [14], [26]). The sleep
inertia parameter b (first introduced in a stochastic model to
simulate the dynamics of sleep-wake transitions [14], [26])
is proportional to the maximal inhibitory current from sleep
promoting neurons, w is a standard Wiener process, and o
is the standard deviation of the integrated neuronal voltage
fluctuations of WPN.

However, Egs. 2-3 assume that the excitability thresholds
of sleep promoting neurons (SPN; predominantly located in
the ventrolateral preoptic nucleus (VLPO)) and of cortical
neurons are equal. While this assumption is true for healthy
sleep, here we hypothesize that for CSA patients there is a
difference between excitability threshold of SPN and cortical
neurons as quantified by GAP. Therefore, for CSA nocturnal
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Fig. 3. Differences in the excitability thresholds of healthy sleep versus
CSA. For healthy subjects the excitability thresholds of SPN and cortical
neurons are equal, whereas for CSA patients, SPN excitability threshold is
increased leading to a ’GAP’ (marked in purple) and a delay in generating
a sleep restoring current (SRC) that attenuates the arousal. Therefore, for
CSA patients, wake bouts show exponential distribution due to the GAP and
because the voltage during an arousal/wake fluctuates mostly in the interval
[0, GAP] (see also Fig. 2). Note that there are also attenuated arousals (for
V' > G AP), which show power-law distribution, however, their contribution
to the overall arousal statistics is only in the order of 10%.

arousals/wake dynamics can be modeled by

AV = o - dw, for 0 < V < GAP
(4a)

b
(4b)

According to this model, an arousal occurs if the neuronal
voltage of WPN is higher than the cortical threshold (i.e.,
V > 0), however, only when V' > GAP, SPN are ac-
tivated causing a ’sleep restoring current’ (represented by
—#AFH in Eq. 4b) to attenuate the arousal. Note that
Eq. 4a for unattenuated CSA arousals and Eq.2b for sleep
bout durations, are very similar and have the same statistics
(i.e., both show exponential distribution). Figure 3 summarizes
the difference between healthy sleep and CSA. Note that the
sleep restoring current is equal to with maximum
[I| =batV =GAP.

b
T V-—GAP+1

B. Calculating the GAP from arousals/wake bout distributions

Wake bout durations in healthy subjects are characterized
by a power-law distribution whose origin can be explained by
the sleep restoring current (SRC) that is triggered at the time
of arousal generation. For CSA, SRC occurs only after a delay
when V' > GAP. Therefore, in the interval 0 < V < GAP,
WPN voltage can be described by a pure Wiener process,
Eq. 4a, without bias (i.e., SRC). We integrate Eq. 4a from
0 to maximum voltage GAP and obtain

/dV = /U-dw (5)

GAP 0-/dw (6)

o / dw)’ )

GAP? =
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Since the differentials of a Wiener process, dw;, are inde-
pendent and identically distributed (i.i.d.) with zero mean,
averaging over all arousals in the interval 0 < V < GAP

yields
GAP? = 02-/<(dw)2> ®)
GAP? = o2. / dt )
GAP? = o2%.7, (10)
GAP = o0-\/Tw (11)

The variance of the standard Wiener process differential dw
is its time interval dt (Eq. 9), and 7, is the characteristic
exponential time decay of the wake bout durations in the
interval 0 < V < GAP (see Fig.4). Equation 11 describes
the GAP as a function of ¢ and 7,, and is valid only when
GAP > 0. We obtained GAP for each individual in our
database using arousals within the intervals [ Imin, 10min] and
[4min, 10min] for adults and children, respectively.

C. Calculating excitability thresholds from sleep and wake
bout distributions

During sleep, WPN voltage values are in the range
—Acortex < V < 0 and can be described by a Wiener process
(Eq. 2b). Similar to Egs. 5-11 integrating and averaging over
all sleep bouts yields

Acortex2 = 02 : /<(dw)2> (12)
Acortcx = 0- \/E (13)

Equations 11 and 13 describe GAP and A o tex, respectively,
as a function of neuronal noise (¢) and exponential time decay.
The main difference between the equations is that Eq. 11
uses the statistics of wake bout durations, whereas Eq. 13
uses sleep bout durations. Therefore, the WPN voltage ranges
are different: for Eq. 11, 0 < V < GAP, and for Eq. 13,
—Acortex < V < 0. Moreover, the exponential time decay in
Eq.13 is of the sleep bout durations (Fig. 5), whereas in Eq. 11
the exponential time decay is of the wake bout durations in
CSA (Fig. 4). The excitability threshold of sleep promoting
neurons, Agpy can be estimated by (Fig. 3)

ASPN Acortex +GAP (14)
Asex = o (VA + V) (15)

where Eq. 15 is obtained using Eqs. 11 and 13.
The neuronal noise level o can be calculated from the sleep
bout durations using Eq. 13

g = Acortcx/\/ﬁ~ (16)
Since Acortex = 25mV (see e.g., ref. [23]) we obtain:
o = 25/\/Ts, (17)

where 75 is calculated using maximum likelihood estima-
tion [20] with M = 6min as the minimum sleep bout duration
to be included in the calculation.

4

D. Calculating the CSAcgap index as a measure of CSA
severity

According to our model, severity of CSA is mainly de-
termined by the value of GAP and the neuronal noise o.
The WPN voltage (current) fluctuations within the interval
V = [0, GAP] can be calculated as follows (cp. Eq. 4a):

dV = o-dw (18)
1%

o = n(t) (19)
I/C = o-n(t) (20)
(rry = c*.q7% 1)

where w is a standard Wiener process, n(t) is Gaussian white

noise (from a standard normal distribution) and i =1/C
(i.e., Hodgkin-Huxley model) with neuronal capacitance C'
that is usually constant [27] (even for different ages [28], [29]).
For the CSAgap index we integrate Eq. 21 over the interval
[0, GAP] and obtain

GAP
CSAgap index = / C?.0%.dV = C%.02.GAP. (22)
0

Since C is merely a constant factor, we can also write

CSAgap index o o2 - GAP. (23)

In terms of electrical engineering, the CSAgap index repre-
sents a measure of power loss in the GAP due to the variations
of the WPN voltage.

E. Akaike weights calculation for exponential and power-law
distributions

For an exponential probability distribution f(z) = % -
exp|—(x — M)/7] we calculate the Akaike’s information
criterion [22] (AIC) using the exponent 7 and likelihood L

as obtained from maximum likelihood estimation [20]

AlCup =2 InL+2=2. (N~IHT+M> +2
(24)
where 7 = (z; — M).

For the power-law probability distribution f(z) = (a/M) -
(x/M)~2~1 we calculate AIC [22] using the power-law
exponent « and likelihood L as evaluated from maximum
likelihood estimation [20]

AICpowerflaw =-2InL+2= (25)
=2(=Nma+NmM+(@+1)> In (%)) +2

where o = N(Zi In (a:i/M))il.

The relative likelihoods of each model is given by the
following Akaike weights [22]

Akaike weights Exponential=
e—AlICexp /2

e~ AICexp/2 1 o= AIChower—taw/2

(26)
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Akaike weights Power-law=
e~ AIChower—1aw/2

e~ AICexp/2 1 o= AIChower—1aw/2

27

The sum of the Akaike weights for exponential and power-
law distributions is always 1. Following Edwards et al. [22],
in Table I we calculate Akaike weights for the pooled data
using bounded ranges of (i) [3min, 14min] for children and (ii)
[2min, 14min] for adults. Hence, the value of M in Eqs. 24 -
26 is M = 2min for adults and M = 3min for children.

F. Database

We analyze hypnograms of adults and children of three
age-matched groups: healthy, obstructive sleep apnea (OSA)
and central sleep apnea (CSA). Groups of adults include: 48
healthy participants (age: 50.9 4+ 9.4 years), 29 participants
with OSA (age: 53.4 £+ 8.0 years) and 25 participants with
CSA (age: 50 £ 10 years). The children groups include: 40
healthy children (age: 6.7 £ 1.9 years), 18 OSA children (age:
6.9 £ 2.7 years), 73 CSA children (age: 6.7 £ 2.6 years) and
10 CSA children treated with CPAP (age: 8.3 & 3.1 years).

Hypnograms of all groups were scored in 30s epochs
and contain the following stages: wakefulness, rapid-
eye-movement (REM) sleep, and non-rapid-eye-movement
(NREM) sleep stages.

Healthy and OSA adults data were recorded within the
EU-project SIESTA [30], whereas adults CSA data were
collected at the St. Vincent’s University Hospital Sleep Dis-
orders Clinic [31]. All children data were recorded at Beijing
Children’s Hospital and scoring was performed following the
AASM guidelines [32].

G. Statistical analysis

In our analyses, statistical significance of p<0.05 indicates
that the correlation is significantly different from zero. Signif-
icance of the favored probability distribution is measured by
Akaike weights probability likelihood (see Eqgs. 26-27).

III. RESULTS

A. Probability distributions of wake bout durations in healthy
and apnea subjects

An important characteristic of sleep regulation is the cu-
mulative probability distribution of sleep and wake bout du-
rations. As has been shown for humans [14], [15] and other
species [16], [19], sleep bout durations follow an exponential
distribution whereas wake bout durations follow a power-law
distribution that emerges during the early postnatal period [17],
[33]. Furthermore, it has been shown that OSA preserves the
power-law distribution for arousals and the scaling exponent
o can be used to distinguish between healthy and OSA
subjects [15]. Since the main contributor to the power-law
organization of arousals is sleep inertia [14] and the related
sleep-restoring current [20], we hypothesize that the absence or
delay of such current is due to the GAP in CSA patients which
abolishes the power-law, and causes wake bout durations to
follow an exponential distribution similar to sleep (compare
Eq. 2b to Eq. 4a).
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Fig. 4. Cumulative probability distributions (cumulative CDF) of wake
bout durations for healthy (blue curves), central apnea (orange) and
obstructive apnea (cyan) patients. Adults (left column, plots a) and c))
and young children (right column, plots b) and d)) show qualitatively similar
results: healthy adults and children, as well as adults and children with
obstructive sleep apnea (OSA) show power-law distributions. In contrast, for
adults and children with central sleep apnea (CSA) the distribution of arousal
durations is exponential. For the sake of clarity, the upper panel shows semi-
logarithmic plots and the lower panel shows the corresponding distributions
on a double-logarithmic plot (a straight line on a log-log plot is indicative of a
power-law, whereas a straight line on a semi-log plot suggests an exponential
distribution). The power-law distributions for healthy participants and OSA
patients can be attributed to the ’sleep restoring current’ from sleep-promoting
neurons (SPN) that ’kicks in’ at the time of arousal initiation [20]. However,
for CSA patients there is a delay between arousal generation and the response
of SPN in triggering such current because of a GAP in excitability thresholds
(Fig. 2). As a result, wake bout durations in CSA show an exponential
distribution. Power-law exponents « as well as characteristic time constants
Ty are presented in Table I. Power-law vs. exponential distribution was probed
by Akaike weights information analysis [22] of the pooled data of each group.
If the obtained Akaike weight is higher for the exponential distribution than
for the power-law distribution, the underlying process is more likely to be
exponential and vice versa (see Table I for a list of Akaike weights for all
groups). The insets in a) and b) show the results of model simulations with
parameters that were determined from the empirical data (see Methods and
Materials). Clearly, an exponential distribution is observed if GAP > 0
(orange dots) whereas the distribution is a power-law for GAP = 0 (blue
dots). Note that MLE is not affected by the choice of binning [21]. Model
results are obtained by pooling the data from 100 simulations for each group
with GAP = 0 (healthy adults and children), GAP = 9.3 mV (CSA adults)
and GAP = 7.7 mV (CSA children).

Figure 4 shows the cumulative CDF of wake bout durations
for adults (left column) and children (right column). While
the distributions of healthy and OSA subjects are very similar
and reminiscent of a power-law (close to straight lines in the
log-log plot of Fig. 4c,d), CSA patients have wake bout distri-
butions that decay exponentially (straight lines in the log-linear
plot of Fig. 4a,b). This observation is supported by quantifying
the Akaike weights [22]. Akaike weights information analysis
shows that for healthy and OSA subjects, data is best fit by
a power-law whereas for CSA exponential fits have higher
Akaike weights (Table I). Model results are shown in the insets
of Fig. 4a,b, simulating healthy sleep with GAP = 0 and CSA
with GAP > 0 and reproducing the power-law and exponential
distributions, respectively.

Another argument in favor of our hypothesis that CSA is
caused by absence or delay of a sleep-restoring current, is

0018-9294 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Bar llan University. Downloaded on March 23,2020 at 19:10:25 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2020.2979287, IEEE

Transactions on Biomedical Engineering

TABLE I
AKAIKE WEIGHT ESTIMATION FOR THE DISTRIBUTIONS OF WAKE BOUT DURATIONS.
Group Akaike weights | Akaike weights favored « Tw
Power-law Exponential distribution
healthy adults 0.971 0.029 power-law 1.2
OSA adults 0.995 0.005 power-law 1.3
CSA adults 0.042 0.958 exponential 1.9
healthy children 0.943 0.057 power-law 1.8
OSA children 0.990 0.010 power-law 1.8
CSA children <1075 1.000 exponential 22
CSA+CPAP children 0.011 0.989 exponential 2.0

Significance tests for power-law and exponential distributions are performed by using Akaike weights [22] of relative likelihoods of the arousal distributions
shown in Fig. 4. A comparison of the Akaike weights for power-law vs. exponential distribution for each group suggests which distribution is better
represented by the data (e.g., higher Akaike weight for the power-law is indicative for an underlying power-law distribution). The Akaike weights are based
on Akaike’s information criterion using each models’ log likelihood [20] (see Methods and Materials). Based on Eq. 29 and on the values of 7, we
estimate GAP = 9.3 mV for our group of OSA adults and GAP = 7.7 mV for the OSA children. Age is not significantly different among the adults (age:
50410 years) and among the children groups (age: 742 years). Note that the Akaike weights are not affected by the choice of binning.

that treatment of CSA children by continuous positive airway
pressure (CPAP) does not affect their wake bout distribution.
Specifically, the corresponding Akaike weights of the wake
bout durations suggest an exponential distribution with a high
probability of P = 0.989 (see Table I). Since we hypothesize
that for CSA patients the sleep promoting neurons have
higher excitability threshold, treatment with CPAP may have
positive effect on their ventilation but will not affect neuronal
signalling between sleep- and wake-promoting neurons. As a
result, the GAP remains above 0 with similar values for both
CSA children with and without CPAP treatment (this is also
confirmed by the empirically obtained 7,, values that are very
similar for both groups, see Table I).

B. Calculating the increase in excitability threshold of sleep-
promoting neurons

According to our hypothesis the delay (GAP’) between
excitation of cortical neurons (caused by an arousal) and SPN
(triggering the sleep-restoring current) in CSA affects arousal
and wake bout distributions (as shown above) but should not
alter the statistics of sleep bouts. Indeed, in Fig. 5 we show
that the probability distributions for sleep bout durations are
exponentials for all groups (healthy, OSA and CSA) with
similar characteristic time constants 7. Notably, 7 is larger
for children than for adults, consistent with an overall deeper
sleep during childhood [19], [34]. Because the distinction
between sleep and arousal/wake is at the level of the cortex
(through analysis of scalp EEG), these results indicate that
the excitability threshold Ao tex does not change with CSA,
and therefore a GAP > 0 is caused by higher excitability
threshold Agpn (see also Eq. 1). The excitability threshold
of the cortex can be calculated from the characteristic time
constants 7, and the level of neuronal noise o (see Methods
and Materials Eqs. 12-13), and [20],

Acortex =0

(28)

with ¢ = 25/y/(sleep bout durations - M) [23] and
Ts = (sleep bout durations - M)  [20], where
(sleep bout durations - M) is the average over all sleep
bout durations beyond the shortest sleep bout duration M, as
considered within the exponential distribution [20].
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Fig. 5. Cumulative probability distributions of sleep bout durations for
healthy (blue curves), central apnea (orange) and obstructive apnea (cyan)
patients. All groups show exponential distributions, with lower characteristic
time constants for a) the adults as compared to b) the children groups. The
similarity in sleep bout distributions among the three groups of adults and
among the children groups shows that sleep periods are not affected by the
GAP and suggests that the cortical excitability thresholds Acortex (Fig. 2)
are similar. In fact, Acortex i8S approximately 25 mV [23] which allows to
determine the neuronal noise level o for adults and children using Eq. 28.
For example, CSA adults with 74 = 13.8 min have o = 25/1/13.8 = 6.7,
and CSA children with 75 = 23.2 min have o = 25/1/23.2 = 5.2.

The value of GAP can be calculated by considering the
dynamics of the WPN voltage in the range 0 < V < GAP as
a simple Wiener process (Eq. 4a), and we determine the value
of GAP as a function of neuronal noise o and the characteristic
time constant of arousals 7,, in CSA (for detailed analytical
derivations see Methods and Materials Eqgs. 5-11),

GAP =0 - \/Ty. (29)
with o = 25/4/(sleep bout durations - M) [23]
and Ty = (wake bout durations - M), where

(wake bout durations - M,,) is the average over all wake bout
durations of the exponential distribution within [1min, 10min]
(i.e., M, = 1min) and [4min, 10min] (i.e., M,, = 4min) for
adults and children, respectively.

The values for 7, can be obtained from Fig. 4a,b with 7,
1.9 min for CSA adults and 7,, = 2.2 min for CSA children,
and the neuronal noise can be calculated from Agoriex and 7
(Fig. 5 and Eq. 28). Therefore, with 7, = 1.9 and 0 = 6.7
(CSA adults), GAP = 6.7-v/1.9 = 9.3 mV, and with 7, = 2.2
and o = 5.2 (CSA children), GAP = 7.7mV. In Fig. 6 we
show that the values of GAP as calculated by Eq. 29 are in
good agreement with the results of our model simulations and
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Fig. 6. Estimating GAP from the characteristic time constant of the
exponential distribution of wake bout durations for CSA. The dashed lines
show the relationship between GAP as a function of the characteristic time
constant 7, according to Eq. 29. The curve for adults (dashed olive green line)
has a steeper slope as compared to the children (cyan) because of higher values
of the neuronal noise o (group averages: oadults = 6.7 VS. Ochildren = D-2
— see Methods and Materials, Eq. 17). Results of our model simulations with
different values of GAP (dark green and dark cyan filled circles for adults and
children, respectively) are in good agreement with the theoretical prediction
of Eq. 29. For the empirical data of CSA subjects we distinguish participants
(adults green/children blue) with mild CSA (CA index<4; open circles) and
severe CSA (CA index>4; filled circles). We note that adults with mild CSA
have significantly lower values of GAP than adults with severe CSA (Mann-
Whitney U test: p < 0.05). There is no difference in the characteristic time
Tw between mild CSA and severe CSA within the adult or children groups,
however, children have significantly higher 7, values than adults (Mann-
Whitney U test: p < 0.01). Shown are mean and standard error of the group
averaged data for GAP and 7,,. Deviations between theoretical curves and
empirical data are mainly due to differences in o (there is a variation of o
within each group while for the theoretical lines we consider only the group
average values).

the empirical analysis of sleep data from CSA children and
adults. The steeper slope of the theoretical curve for CSA
adults is due to the higher values of the neuronal noise level
o. Moreover, it can be seen that subjects with more severe
CSA tend to have larger GAP values.

C. Introducing a new parameter to evaluate severity of central
sleep apnea

On the practical side, the GAP value (Eq. 29) could be
used to evaluate the CSA severity. From the WPN voltage
fluctuations in the interval 0 < V < GAP we can derive
a measure of ’energy dissipation’ to characterize sleep/wake
transitions in CSA patients. We call this measure CSAgap
index, and we calculate it by

CSAgap index = o2 - GAP (30)

with o = 25/,/(sleep bout durations - M) [23] and GAP
can be calculated by Eq. 29 (for exact analytic derivation, see
Methods and Materials Eqgs. 18-23).

In Fig. 7a we show that the CSAgap index increases with
CSA severity (as quantified by the CA index) and is a superior
marker for CSA severity than a common measure using the
number of arousals per night [35](cp. Fig. 7a and b). Moreover,
the CSAgap index is better correlated with the CA index than
the GAP values alone, indicating that the neuronal noise level
plays an important role in CSA.
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Fig. 7. Comparison of clinical measures to evaluate CSA severity. (a)
Our CSAgap index as calculated by Eq. 23 for each subject (pooled data
of children and adults) shows a very good correlation with an expert scoring
of CSA severity quantified by the CA index (Spearman’s rank correlation
coefficient p = 0.75 (p < 10~7)) (separately for children (blue filled circles):
p = 0.58 (p < 10~2), and for adults (green filled circles): p = 0.78 (p <
10~3)). (b) The number of awakenings per night is considered to be a good
indicator for CSA severity [35] and yields p = 0.48 (p < 10~2) (children:
p = 0.40 (p < 0.05), and adults: p = 0.58 (p < 10~2)). These results
suggest that the CSAgap index is a robust parameter (as it is valid for both
children and adults) as well as a more sensitive measure of CSA severity than
the number of awakenings per night.

IV. DISCUSSION

We have conducted a systematic analysis of sleep data from
healthy participants and patients with OSA and CSA, and we
show that wake bout durations for healthy adults and healthy
children as well as adult and children with OSA follow a
power-law distribution. In contrast, we find that wake bout
durations of CSA patients (adults as well as children with and
without CPAP) decay exponentially. We propose a mechanism
for this change in CSA wake bout distributions caused by
the absence of the sleep restoring current at the transition
from sleep to wake/arousal. Specifically, for CSA, the sleep
restoring current occurs only after some delay due to higher
excitability threshold of sleep promoting neurons (that trigger
the current) as compared to the excitation of cortical neurons
(that lead to arousal). The difference in these excitability
thresholds ('GAP’) is directly related to the delay between
arousal generation and arousal attenuation, and when assuming
a GAP in our biased diffusion model, we can reproduce the
empirically-found exponential arousal distributions.

The GAP values can be estimated for individual subjects
based on their arousal statistics throughout the night, and
we suggest a clinical measure CSAgap index’) of CSA
severity that correlates very well with the manual CSA scoring
provided by sleep clinicians. Since arousals during sleep
can be determined simply by actigraphy [36], our method
may be used to diagnose CSA (through the distribution of
arousal/wake bout durations) and to monitor CSA treatment
and progression (through the CSAgap index) in home envi-
ronment on a daily base.

Generally, the findings by Lo et al. of a power-law probabil-
ity distribution of wake-bout durations in healthy subjects [14],
[16] as well as in OSA subjects [15] strongly indicate that
arousals and short awakenings during sleep have physiological
origin rather than being just random (external) perturbations
(in which case one would expect exponential distributions).
Moreover, the coexistence of scale-invariant (i.e., arousal
distributions) and scale-specific (i.e., sleep distributions) pro-
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cesses as output of a single sleep regulatory mechanism
suggests that sleep (or brain dynamics during sleep) can be
considered a self-organized criticality (SOC) system [15],
[37]. As we show for CSA subjects, the power-law distribution
of arousal durations is lost making sleep-stage transitions in
CSA more random and diminish the SOC characteristics of
the sleep process.

Our work provides a simple method to discriminate between
OSA and CSA based on their arousal/wake bout durations.
This discrimination is important, since OSA and CSA show
similar clinical manifestation (i.e., sleep-disordered breathing)
but their underlying pathology is very different and may
require different treatment. Basic characteristics of sleep and
wake bout distributions of OSA are similar to those of healthy
participants (Fig. 4, Table I, and Appendix Fig. A1) suggesting
that endogenous sleep regulation is largely unaffected in OSA.
On the contrary, the alterations in arousal statistics of CSA pa-
tients imply that sleep-promoting centers do not show normal
activity and their response to arousals is delayed. Therefore,
CSA may be characterized not only by higher apneic threshold
but also by higher excitability threshold of sleep-promoting
neurons (SPN). Indeed, future studies of CSA could investigate
abnormalities in excitability threshold also in other neuronal
brain centers that are, for example, related to metabolic or
cardiac regulation, as CSA is often associated with high
incidence of cardiovascular disorders [38] and obesity [39].

Patients with sleep-disordered breathing sometimes show
apnea of mixed type, i.e., apnea episodes begin as CSA
and end as OSA [40]. In this case we expect a deviation
from the power-law statistics of arousal durations towards an
exponential distribution. However, further research has to show
whether CSA and mixed apneas can be discriminated based
on the analysis of hypnograms alone.

Currently, the standard treatment strategy of CSA focuses on
the induced breathing problems and application of continuous
positive airway pressure (CPAP) [41] sometimes in combina-
tion with supplementary CO5 [9]-[11]. However, even in the
presence of CPAP and CO; arousability remains high, leading
to low sleep quality [10]. Moreover, we have found a GAP>0
even in CSA children treated with CPAP (see Fig. 4 and
Table I). Our results suggest to combine supplementary COq
inhalation with administration of eszopiclone. Eszopiclone is
a sedative agent that has been shown to lower the excitability
threshold of GABAergic neurons [42], and therefore could
effectively decrease the GAP leading to simultaneous SPN
response to cortical excitation and reduce arousability.

Our analysis may also shed light on the ontogeny and
phylogeny of mammalian sleep in general and sleep regulation
during early maturation in particular. As has been shown for
fetal sheep [33], infant mice [18] and rats [17], wake bouts
initially follow an exponential distribution and a power-law
distribution emerges during the early postnatal period. There-
fore, sleep in mammals during the prenatal and early postnatal
periods could be influenced by not yet fully developed sleep
promoting neuronal centers in the brain as reflected by higher
excitability thresholds and manifested in GAP > 0. In the
course of maturation, SPN excitability thresholds normalize
resulting in GAP = 0. Since CSA is common in preterm

and newborn infants and during infancy in general [4], and
there is an age-related decrease in CSA that is thought to
be related to maturation of the central nervous system [43],
GAP as obtained from wake bout durations could be used to
monitor maturation and in turn help to determine a marker of
biological age for premature babies and infants.

The stochastic model of sleep arousals presented in this
paper is based on competing excitatory vs. inhibitory neuronal
inputs. This concept of modeling the competition between
opposing/competing regulatory mechanisms (e.g., sympathetic
vs. parasympathetic tone) has been successfully used in earlier
works on cardiac dynamics [44], [45] and human gait [46] to
obtain the scaling behaviors commonly observed in physiolog-
ical signals under neural regulation [47]. Introducing a time
delay between excitation and inhibition (for example due to
different excitability thresholds in wake- and sleep-promoting
neurons ("GAP’) in case of CSA) can lead to the alteration
or even breakdown of the scaling behavior. It needs to be
shown in future studies whether this sensitivity to time delays
is a general property of complex systems with competing
regulatory dynamics.

V. CONCLUSIONS

Central sleep apnea (CSA) is a common sleep disorder
in younger children and in the elderly, and it is particularly
frequent in chronic heart failure patients. Little is known about
the pathogenesis of central sleep apnea (CSA), and there
is no definite treatment strategy for CSA. In this work, we
investigate the underlying neuronal mechanism of CSA by
studying sleep data from adults and children. We find that the
sleep/wake statistics of CSA patients is very different from
those of healthy subjects and even patients with obstructive
sleep apnea (OSA), and we show that this difference may
be due to neuronal malfunctioning in CSA that increases the
excitability threshold of GABAergic neurons. We anticipate
that our methodology on deriving the difference in excitability
thresholds based on simple and vastly available sleep/wake
recordings can improve medical diagnostics (e.g., distinguish-
ing between CSA and OSA) as well as offers new strategies
and monitoring of pharmacological treatment of CSA patients.

APPENDIX A
HISTOGRAMS OF WAKE BOUT DURATIONS

Because of the delay between arousal generation and SPN
excitation, which results in lack of an arousal-attenuating
current, CSA patients have more intermediate length arousals
compared to healthy subjects and even patients with OSA
(Fig. Al). Specifically, we find that for CSA adults, arousals of
1-2 min duration are increased by a factor of 1.5 as compared
to healthy and OSA subjects. Moreover, for CSA children
intermediate arousals (duration 6.5-9 min) are increased by
a factor of 2.5 (Fig. Al).
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