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Modularity is a key organizing principle in real-world large-scale complex networks. Many real-world
networks exhibit modular structures such as transportation infrastructures, communication networks, and social
media. Having the knowledge of the shortest paths length distribution between random pairs of nodes in such
networks is important for understanding many processes, including diffusion or flow. Here, we provide analytical
methods which are in good agreement with simulations on large scale networks with an extreme modular
structure. By extreme modular, we mean that two modules or communities may be connected by maximum
one link. As a result of the modular structure of the network, we obtain a distribution showing many peaks that
represent the number of modules a typical shortest path is passing through. We present theory and results for the
case where interlinks are weighted, as well as cases in which the interlinks are spread randomly across nodes in

the community or limited to a specific set of nodes.
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I. INTRODUCTION

The study of complex networks gains extensive interest in
the last years as networks successfully model and lead to bet-
ter understanding of many real world systems and processes
in which interacting objects are involved. In these models,
objects are represented as nodes, and the interactions by links
[1-7].

Many real world networks exhibit a modular or community
structure [8—11]. That is, a network is comprised of smaller
networks (called communities, or modules) that are highly
connected within themselves (by intralinks), and have a lower
number of links between them (interlinks), which is a key to
their structure and function. For demonstration, see Fig. 1.
Knowing the distances distribution within networks with such
topology is important for many reasons such as designing
fast-communication, navigation, disease spreading, and for
optimizing processes on large graphs.

For each random pair of nodes i and j in the network, many
paths can exist, or none at all. The distance between a pair of
nodes is naturally defined as the shortest path length among all
the paths existing between them. Distribution of shortest paths
are expected to depend on the network structure and size.
However, apart from a few studies [12—17], the shortest paths
length distribution (DSPL) despite its importance, attracted
little attention. Recent studies developed analytical methods to
compute the DSPL in Erd8s-Rényi and configuration-model
networks [18,19]. Another paper studied the DSPL in modular
random networks [20], testing the conditions in which the
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number of interlinks between two or more modules control
the network topology. This means, answering the question
“how many links between two modules are needed in order
to unite them into one?” Adding more interlinks results in a
change of the SPL distribution, which approaches a § function
as we add more interinks. Still, the case where the connections
between the modules is itself a complex network, meaning
that the interlinks are determined according to a given outer
network, an analytical approach for finding the DSPL has not
been developed yet.

As a motivation for the present study, we analyzed the
distance distribution (DSPL) in the internet routers-IP au-
tonomous systems (AS) network. Each AS functions as a
community, and contains routers IPs which are the nodes
inside the community. The data were obtained from the center
of applied Internet analysis (Caida) [21]. Several studies have
been performed on distances in the internet [22-24]. Here, we
want to point out a specific phenomenon which occurs when
more and more interlinks are removed. In this case, a wavy
distribution emerges. In Fig. 2 we show the distance distri-
bution (DSPL) of our data for different values of maximal
interlinks degrees. By limiting the number of interlinks of
an AS, we mimic a situation in which the internet network
undergoes an attack or power shortage. We can observe in
Fig. 2 multiple peaks for the DSPL after such an attack,
representing the modules passed by the shortest path. This
phenomenon motivates us here to develop a simplified model
of extreme community structure which exhibits a wavy DSPL,
and we study this analytically in order to better understand this
phenomenon.

In this paper we develop an analytical approach for obtain-
ing the DSPL of a modular network. Our theory calculates
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FIG. 1. Illustration of the model. We study networks that com-
prise M modules, each of which has the same degree distribution,
same topology, and same size, n. Thus, we study a modular network
with a total of M xn = N nodes. The upper picture shows the whole
network, where nodes of each module have different color. The lower
picture is a projection of the upper network, showing the outer net-
work, where each node represents a module. We start by constructing
each module according to a given topology, mean degree (k;,) and
links distribution, and then construct the outer network which has its
own topology, mean degree (ko ), and links distribution, where we
consider each module as a node. Two modules can be connected by a
maximum of one link. In Sec. III we provide an analysis of different
network topologies.

the DSPL of the network given the shortest path distribution
within one module (in net), and the DSPL of the network
that connects the modules by treating each module as a node
(out net). Our method holds for any inner and outer network
topologies, and not only for random networks. The model
we suggest assumes an extreme community condition where
each module 7 is connected to module J with a maximum of
one link that connects two randomly chosen nodes in both
modules. Another condition we assume here is that the outer
network has no small loops as explained in detail below.
In order to better simulate real world phenomena, such as
routing and transportation between cities or countries, our
model assumes a weight w for interlinks, where intralinks
weight is set to 1. We further include analysis of various cases
in which interlinks are limited to a specific set of nodes rather
than being chosen randomly from the inner network. Analytic
analysis of specific network topologies is also included.

The paper is organized as follows. In Sec. Il A we present
the basic model and theory we use to find the DSPL. In
Secs. IIB and IIC we extend the theory for different inter-
links configurations. In Sec. III we present our results of
DSPL, from both our theory and simulations of selected net-
work topologies. More comprehensive mathematical analysis
of some specific cases of network of networks is presented in
more detail in the Appendix.
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FIG. 2. Analysis of autonomous systems (AS) distances distri-
bution for different values of maximal number of interlinks outgoing
from one module (max degree). AS data were obtained from Caida
and collected using MIDAR-iff, where router topology based on
aliases discovered by MIDAR, iffinder, and kapar. The data contained
approximately 100 million nodes which are assigned into 47 000
communities (AS). a node that connects two different ASs is an
interlinked node. Here, we consider a case in which the internet
network undergoes a deliberate attack or experience node failures
due to lack of electricity supply on interlinks between AS. We
expect that interlinked nodes fall with higher probability, due to
their high between-ness centrality (in case of a deliberate attack)
or high power demand in the case of power outage). We examine
the distance distribution for those cases, allowing different maximal
interlink degree of an AS. Here, distance is defined as the shortest
path length between two nodes in the graph. Note the wavy pattern
of the distribution.

II. MODEL AND THEORY

A. Basic model

Let a network consist of m communities, or modules. Each
module is assumed to be of the same size and constructed in
the same fashion (or just with the same distances distribution),
e.g., Erd6és-Rényi, scale-free (SF), random regular (RR), lat-
tice, or any other structure. An outer network, which also can
take any structure, regards every module as a node. Therefore
we obtain a “large” network which comprises modules, and
another network on top of it which connects those modules as
illustrated in Fig. 1.

Our model assumes the following:

(1) There is at most one interlink between two modules.

(2) The interlinks connect between pairs of random nodes
of two modules.

(3) Interlinks have a weight w (integer), while the weight
of intralinks is 1.

(4) The outer network has no small loops.

(5) As a consequence of (4), an outer shortest path between
modules in the outer network is single and the second outer
shortest path is much longer than it. Therefore, the shortest
path in the whole network, in most cases, will pass through
the shortest path of the outer network.

It is important to notice that while assumptions (4) and
(5) hold for short distances, they partially fail for the long
distances in the network. Hence, we expect slight deviations
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FIG. 3. Illustration of the problem and the theory. Consider two
random nodes i and j, which reside in different modules m; and m;.
In order to reach via the shortest path from node i (source) to node
J (target), one has to walk as follows. First, to find the outer shortest
path that connects the modules (/°""). Next, to look for the shortest
path within m; to the node that connects the source node to a node
that resides in the next module of /°", which is denoted by /" in the
figure. We iterate this process again in the next modules on the path,
until we finally land in our target node. Our total path length will be
d =1 4wl

at the end of the distribution, as seen in general in the figures.
Random sparse networks, for instance, exhibit locally tree-
like behavior [25]. The range of this behavior is up to the
average distance of the network approximately [26], therefore
for these networks our theory is accurate up to the average
distance of the network, and then it has slight deviations as we
show below. For a one-dimensional (1D) lattice, for example,
assumptions (4) and (5) are valid up to the longest distances,
whereas for a two-dimensional (2D) lattice, the assumptions
fail.

Now, the shortest path length (SPL) distribution in each
module (inner paths) is Pli“, and has the generating func-
tion Gj,(x) = Z?io Pli“xl. Likewise, the SPL distribution of
the outer network is P and has the generating function
Gou(x) = Y2y PPix!.

According to the above assumptions, one can find that the
SPL between two random nodes in the network satisfies

lOul+]
d= Y I"+wl™, (1)
i=1
which yields
l()ulJrl
d+w= Z(zg“+w), )

i=1

where d is the total distance between two random nodes, /°*
is the external shortest path length between the communities
those nodes reside in, and ll.i" is the internal distance between
nodes in the same community which function as the connect-
ing nodes between the communities in [°*. See illustration
in Fig. 3.

FIG. 4. Illustration of the model in Sec. II B. Here, each module
has only one interconnected node to which all the interlinks of this
module are connected.

This is a sum of independent random variables where
the number of elements of the sum itself, is also a random
variable. Then we can use known theorems [27] to conclude
the following results.

First, from Wald’s identity,

(d+w) = {° + D)™ + w),
which gives
(d) = ({I°y + D™ + w) — w. (3)

This result suggests that in small world networks the extreme
modularity condition makes the average distance much longer.
Furthermore, for the generating functions one can write

X" Ga(x)] = [xGou (X)] 0 [x* Gin ()],
x"Ga(x) = x" Gin (0)Gout[x" Gin (¥)],

where G,4(x) is the generating function of P, the probability
distribution of d, and o is a composition of functions.
Thus, we get

Gd ()C) = Gin (X)Gout [xw Gin (x)] . (4)

Since we have the generating function of the shortest path
distribution we are consequently able to find P; by derivation
or integration (Cauchy formula) numerically by

G0 1 [ Gu)
Pp=—4_"=__ , 5
T i | 4F )

where the integral is performed on a close path around z = 0
in the complex plain. This integral is far more simple to com-
pute numerically than computing high derivatives. A simple
contour can be a canonical circle with r = 1.

See Appendix A where we analyze analytically few spe-
cific cases of network of networks topologies: including, 1D
and 2D lattices, Poisson distance distribution, two modules,
and star graph. We find for these cases explicitly all or part
of the following expressions. Gipyou(x), G4(x), and P;. For
two modules with Poisson DSPL we find analytically also
a condition for the appearance of two peaks rather than one
peak, see Eqgs. (A19) and (A20) and Figs. 12 and 13.

B. One node has all the interlinks in each module

When analyzing the internet data (AS) that was mentioned
above, we noticed the fact that many interconnected nodes
have multiple interlinks. In order to cover other realistic cases
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FIG. 5. Illustration of the model in Sec. II C. (a) In this scenario
we enter the community through node i and leave the community
with probability p through a different node j, with addition of a tour
inside the community. (b) Here, with probability 1 — p, the arrival
and the departure to and from the community is from the same node.

such as this, we consider also the scenario in which all the
interlinks of a module go out and in from the same single
interconnected node, rather than from random nodes as the
above model, see Fig. 4. This situation changes the distance
significantly,

d=101"+ 1"+ wl™,
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and if /°" = 0 then d = I (because the source and the target
reside in the same module). Hence,

Ga(x) = Gout(0)Gin (x) + [Gouc(x") — Gouc (0] [Gin(x)]2~ (6)

C. Different cases of interlinks connections

In this section, we consider the case in which, when
entering a module via an interconnected node i, we leave this
module via different interconnected node j with probability
p, or, when departing the module via the same node with
probability 1 — p. See Fig. 5.

In Appendix B we find that for this case

Gi(x) = Gou(0)Gin(x)

Gou(x"(1 — p+ pGin(x))) — Gour (0)
1 — p+ pGin(x) '

+ [Gin ()
@)
One can see that the last equation converges nicely to those of

Secs. IT A [Eq. (4)] and II B [Eq. (6)] at the limits p = 1 and
p = 0, respectively.
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FIG. 6. Results of distance distribution in several types of modular networks with uniform links weight (w = 1). In (a) we show the case of
ER xER (outer network ER, modules ER), with M = 10? (number of modules), ko, = 4, n = 10° (size of each module), and k;, = 4. Theory,
simulations mean and simulations standard deviation (shaded area) results are shown. (b) The same as (a) except that ko, = 2. In (c) we show
RR of SF (out: RR; in: SF), where M = 10%, koy = 3, n = 10°, ki® = 2, and the power-law degree exponent is ¥, = 3. In (d) we show RR
of WS (Watts-Strogatz model), where M = 10%, kow =3, n = 10%, kj, =4, and B = 0.5. Simulation results were taken over ten realizations.
In all cases one can see a good agreement between theory and simulations except for slight deviations at large distances, the reason of which
is discussed in the text. The wavy distributions found here are significantly wider than a distribution of a single network, due to the extreme
modular structure. In a single ER network, the mean distance is given by (d) ~ In(N)/In(k), where in our model in the case of ER XER the
mean distance is (d) &~ (In(n)/ In(ky,) + 1)(n(M)/ In(key) + 1) — 1. See Eq. (3).
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FIG. 7. Weighted interlinks cases. Assuming a weight w to interlinks, results for random and lattice networks are shown. In (a) we show
a ER of ER network with the parameters M = 10%, ko =3, w = 10, n = 10%, and k;, = 3. Theory, simulations mean, and simulations
standard deviation (shaded area) results are shown. In (b) we show a RR of L2D (outer: RR; inner: 2D lattice) network with the parameters
M =102, kow =3, w =10, and n = 10%. In (c) we show L1D of L2D (outer: 1D lattice; inner: 2D lattice) with M = 15, w = 10, and
n = 121 and the theory is from the explicit formula in the Appendix. In (d) we show a RR of L2Dperc (2D lattice with percolation where
fraction ¢ of random nodes was removed) network with the parameters M = 10?2, ko =3, w =10, n = 10%, and g = 0.2. For this case,
we test the DSPL in the giant connected component. All cases show exclusive distances distribution and good agreement between theory and

simulations.

III. RESULTS

Figure 6 compares between theory and simulations for
different network layouts and parameters where the inter-
links have the same length as the inner links, i.e., w = 1. In
general the figure shows a good agreement between theory
and simulations.

It is important to notice the distance distribution exhibits
a wavy behavior on top of a hill envelope. The intuitive
explanation for this is that each hill represents paths between
nodes in two modules that have the same outer distance. The
first hill comes from paths between nodes inside the same
module, while the second hill comes from paths between
neighboring modules, which are about twice longer due to
their consistency of two inner paths—the first, in the source
module, from the source node to the interconnected node
inside the source module, and the second, from the intercon-
nected node in the target module, to the target node. The
second hill is higher because there are more paths between
neighboring modules than paths within a single module. In
other words, in the outer network (in between modules), there
are more shortest paths with [°" = 1 than with [°"* = 0. The
same holds for the third hill (I°*" = 2) and so on. That is to
say, what rules the hills’ heights is the outer SPI distribution,

therefore we get a bell shaped envelope which comes from the
outer network distribution, and upon it hills which come from
inner networks distribution.

Note that, for the long distances there is a slight deviation
between the theory and the simulations results. This can be
explained by the fact that in theory we neglect loops in the
outer network, while in practice, for finite networks, there
are long loops (the short ones are negligible). The long loops
causes that there are modules far from each other have few
outer similar paths between them. This multiplicity of similar
outer paths shortens the distance from a source node to a
target node because the shortest path is chosen among them.
In this case, we will need to find the minimum of similar
independent random variables, which is different (lower) than
the expectation value relative to the random variables.

Figure 7 shows the results for the distance distribution for
the extreme modular network, both theory and simulations,
where interlinks are weighted with w = 10. It can be seen
that the separation between the hills becomes more significant
because paths between modules with different outer distances
have dramatically different lengths as a result of the length
of the interlinks. Within a single 2D lattice there is a broad
distance distribution because the system is not a small world
network. As a result when the interlinks are not much longer
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FIG. 8. Impact of the parameter p in both theory (a) and simulations (b). Results of Eq. (7) where the network is formed as follows. Out:
RR, M =100, k =3, w = 1.In: RR, n = 1000, k = 4. where (a) shows the theory, Eq. (7), and (b) shows simulation results. The values of
p in simulations were found by sampling many realizations of random shortest paths and measuring how many times each path goes in and out
a module through different interconnected nodes and how many times via the same node. Results show good agreement between theory and

simulations.

than the inner ones, the wavy behavior vanishes because the
widths of hills are large so they become blended together.
However, when w is sufficiently large, the waves are very
distinct.

Figure 8 shows the results of Eq. (7), for various values of
p. This model suits a more realistic case, in which there is a
probability p of accessing and leaving a community through
a different or the same (1 — p) interconnected node. Note the
reduction in the number of waves when p approaches 0, which
is the case in which no intramodule paths were taken.

In order to examine the emergence of the wavy distribution,
we regulate the parameter n, modules size. We show in
Fig. 9(a) that where n is very small the network acts as a single
network, of course. However, when we increase n more and
more, at some point the wavy pattern appears and becomes
more and more clear. In Appendix A 5, we find analytically a
criterion for the emergence of a wavy distribution in a network
of two modules. In Fig. 9(b) we show by changing the outer
average degree, koy, how the sparsity of the outer network
affects the waviness of the distribution.
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IV. DISCUSSION

In this paper we develop a framework to find analytically
the distance distribution within networks with extreme com-
munity structure given the distributions of the inner and outer
networks. We study here a model where we assume there is
at most a single inter-link between modules. We showed that
the SPL distribution has a wavy pattern in good agreement
with simulations. Future work can investigate the validation
of this model for real networks, where multiple links between
modules exist.
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FIG. 9. Impact of the modules size and the outer degree on the wavy distribution. In (a) the network parameters are Out: ER, M=100, k=3,
w = 1. In: ER, k =4 and n changes. The results were averaged over five realizations of simulation. In (b) all the parameters are the same,

except n = 1000 and k., changes.
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APPENDIX A: SPECIFIC NETWORKS
1. 1D lattice

Consider a 1D lattice with periodic boundaries with size
L, where L is odd, for simplicity. The distances frequency of
each node from all other nodes is given by

I, 1=0
N =12 I<I<(L-1)/2, (A1)
0, I>L/2

where N, is the number of nodes in distance / from the source
node. Then, the distance distribution, P, is obtained by

P =N;/L. (A2)
The generating functions of N; and P, satisfy
Gy(x)=—14+2(1 +x+--- +xL7D/2
1 — x@+D/2
=—-14+2—" (A3)
1—x
Gp(x) = Gy(x)/L.
Thus,
1 1 — x@+D/2

Comment: In Eq. (Al) we counted twice the distances
between different nodes i and j [(i, j) and (j, )], and only
once the distance (0) between a node i to itself. The reason
is that we define P, as the probability of the distance between
two random nodes to be [. Indeed the probability to choose
different nodes i and j is twice as large as the probability to
choose the same node i twice. Note, it matters only for the
value of P,.

2. 2D lattice

Consider a 2D square lattice with periodic boundaries and
size Lx L. For simplicity, we assume that L is odd. Then, the
distances of each node from all other nodes have the following
frequency:

1, [=0
0, [ >L
and the distance distribution is
P, =N /L. (A6)

We note that N, is obtained by a convolution of the series a;
and b;, where

_[Loo<i<z2z—1 (1, 0<I<L)2
“=%0, 1>Lp2-1 > "T)o, i>Lp2
(A7)
such that
No=1
. A8
{Nl+1:4(al*bl) (A8)

As a result, the generating functions of these sequences
(a1, by, Ny, Py) satisfy

Gn(x) = 1 +4xG,(x)Gp(x)

Gp(x) = Gy (x)/L*. (A9)
But note that
Gu(x)=1+x+-- +xt72 = ﬂ,
1—x
Gyx)=14+x+---+xLD2 = # (A10)

Therefore, we obtain

Gop(x) = Gp(x)

1 1 — xL-1/2)(] — xL+1/2
=§<1+4x( X )>. (A1)

(I —x)?

3. 1D lattice of 2D lattices

Consider a circle of square lattices that are interconnected
with one interlink between two random nodes from neighbor-
ing lattices. The interlinks have weight w while the intralinks
have weight 1. Then, the distance distribution is obtained
according to Eqgs. (A4), (Al1), and (4) by

Gipx2op(x) = Gap(x)Gip(x” Gap(x)).

This result is shown in Fig. 7(c).

(A12)

4. Poisson distance distribution

To get insight of the wavy distribution, we assume here
that the network has a Poissonian distance distribution. This
will enable us to obtain analytically the DSPL in our model
of extreme modular networks. Indeed random networks have
in certain parameters range a distance distribution which can
be approximated by a Poissonian distribution, as shown in
Fig. 10. This changes with the degree and the network size
significantly. For higher degrees it does not work so well,
while for small degrees it does.

Thus, under proper conditions, if

)\’l
b= Fefk, (A13)

where A = ([), then the generating function is as known

G(x) = 7D, (Al4)

Now, if both inner and outer networks have approximately
Poisson distribution, then for P; it is satisfied according to
Egs. (A14) and (4) that

Gy(x) = eFnDghoulatnt=0=1) (A15)

where Ai, = (™) and Agy = (1°%).

Still, it is difficult to find an explicit expression for the
Taylor coefficients, which are P;, in order to find some criteria
for the emergence of wavy distribution. However, numerical
calculation shows that if (/") is large enough relative to (/°"),
then the wavy pattern appears. See Fig. 11.
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FIG. 10. Test of Poisson approximation for ER DSPL. Simula-
tions were performed over ER network with k = 2 (top) and k = 4
(bottom). Marked lines represent simulation results and unmarked
lines are Poissonian distributions with the same mean. For k = 2 the
approximation is good, while as n increases further it becomes less
accurate. However, when k = 4, there is a large deviation between
theory result and simulations even for small system size. Generally,
we see a difference that Poisson distribution has a standard deviation
VX where the average is A, while the DSPL does not change its
standard deviation while changing its average for large n.

5. Two modules

To better understand the transition from a single peak
to wavy distribution of distances, we study here a simple
case which can be fully analyzed analytically. To this end,

0.03
— (") =10

I (") =15

0.02 i — 20
S
0.01¢
0 .
0 50 100 150 200 250

d

FIG. 11. Both inner and outer networks have Poisson distance
distribution. Analytical results of Egs. (A15) and (5), where (/°"")=5.

2
A=
—A=6.27
1.5 A=10
.
<
f 1
. \
0
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d

FIG. 12. Analysis of P,;, for two modules having Poissonian
DSPL with average A. The plot shows the ratio P,.;/P, according
to Eq. (A19). If the ratio is greater than 1 then P, increases, and if the
ratio is lower than 1 then P, decreases. In this analysis the interlinks
weight w = 1.

we study a network of two connected nodes that satisfies
Py=1/2, Pp=1/2, and P, = 0 for any other /. Hence, the
generating function is

Giwo(x) = %(1 +x).

Let a network of two modules which have a Poisson DSPL.
Then, according to Egs. (A16), (A14), and (4) we obtain

GiwoxPoisson (X) = %ek()kl)[l +xw€}\(X7l)]a (A17)

(A16)

where A = (/™).
Then we can find the coefficients of the Taylor series

1 < A4 1 < 204
GwoxPoisson (X) = E Z Ze_}\xd + 5 Z _d' 3_2)\xd+w,
d=0 d=0
that yields
14—
st e ™, d <
p=1{*4 — (A18)
l%l_!e_k + %((?—)w)!e_u’ dzw
If w=1,thenford > 1
124 d2?
P =-— —A 1 o A
1T ( AT )
Next, we find the ratio
P A 2A 4 (d + 1)24F e
$(d,2) =~ — X2 e ™ (ar9)

P, d+1 2% + d2de—*

This ratio indicates whether the series P; increases (¢ > 1)
or decreases (¢ < 1). From Fig. 12 one can see that for small
A (L =4) P; increases up to some value and then decreases.
In contrast, for large A (A = 10) P; increases again after
decreasing, which indicates a wavy pattern. However, in the
transition (A = 6.27) two conditions are satisfied:

I d)(dc: )Lc) = 17
R _ (A20)
I 2 (des ) = 0.

Numerical solution of these equations yields A, = 6.27.
Namely, for two modules which have Poisson DSPL, if (/ iny >
6.27, then two peaks will appear. Assuming each module is
ER with ki, = 2 (see Fig. 10), we find numerically that the

022313-8



DISTANCE DISTRIBUTION IN EXTREME MODULAR ...

PHYSICAL REVIEW E 101, 022313 (2020)

0.15
— (") =3
— ("™ =5
I (imy=1
0.1 S
S
0.05
0
0 10 20 30 40 50
d
0.15 ‘
—n =20
—n =50
| n = 150
0.1 —n =500
b
0.05
0

0 10 20 30 40 50
d

FIG. 13. Emergence of multiple peaks in two modules with
Poisson DSPL. The upper panel is from theory [Eq. (A18)], and
we see that the emergence of two peaks is for 5 < (/") < 7 which
is in agreement with the value found A, = 6.27. In the lower panel
we show simulations of ER with k = 2, and one can see that the
transition is slightly above n = 150, consistent with the finding that
approximately n = 160 gives (/) = 6.27. It works well for k =2
because for this range the Poisson approximation holds well as
shown in Fig. 10.

required size should be approximately n = 160 in order to
satisfy (/) > 6.27. See Fig. 13 where the simulations results
are consistent with this prediction.

For different values of w a similar analysis can be done.
Higher values of w yield lower values of A.. As example,
we find numerically that A, ~ 3.31, where w = 2. In contrast,
where w = 0, then 1. ~ 8.38.

6. Star graph

A star graph with n nodes has the following distance
distribution:

n, [=0

N =1{2n—-1), [=1,

25 1=2

(A21)

and P, = N;/n*. Then

Gyar(x) = Py + Pix + Pox’. (A22)
P, is about twice Py, and P; is about n times Py. Thus, for outer
network star graph, if the inner network is such that there are
separated peaks, there will be three peaks where the third one
is much higher depending on 7.

APPENDIX B: DIFFERENT CASES
OF INTERLINKS CONNECTIONS

In this section, we analyze in detail the case of Sec. II C for
which, when entering a module via an interconnected node
i, we leave this module via different interconnected node j
with probability p, or, when departing from the module via
the same node with probability 1 — p. See Fig. 5.

We denote /°°" as the length of the path within the module
which was taken during the course, excluding the first and
the last modules. Thus, with probability 1 — p, [°°" = 0 (when
entering and exiting were via the same node), and with proba-
bility p, [°®® = /'™ (when entering and exiting the module has
been done via different nodes). In the latter case, the distance
between the two interconnected nodes is the typical random
distance within the module. Therefore,

lou—1
d = lin +l£n +wl0ul + Z l;:on
i=1
lou171
=5+ +w+ Y (" +w),

i=1

(B1)

and if [°" = 0 then d = /™. Hence,

Ga(x) = Gout(0)Gin(x) + [Gin (x)]x"
X ([Gou(x) = Gour(0)]/x) o (x*(1 = p+ pGin(x))).

As aresult

Ga(x) = Gou(0)Gin(x)

Gou (" (I = p+ pGin(x))) — Gou(0)

3 2
+ [Gin(®)] 1= p+ pGin(x)

(B2)

Note that the last equation converges nicely to those of
Secs. IT A [Eq. (4)] and II B [Eq. (6)] at the limits p = 1 and
p = 0, respectively.
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