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Abstract — Understanding the robustness of interdependent networks has attracted much at-
tention in recent years. In many real scenarios, links may fail instead of nodes and how the
interdependent networks behave in this case has not been adequately addressed. In this work,
we investigate the link failures propagation mechanism for both two-layer and n-layer interdepen-
dent networks by using the self-consistent probabilities method which significantly simplifies the
mathematical analysis of such systems. For bond percolation in which initial link failures occur in
one layer, we find, analytically and via simulations, that the critical percolation threshold, p., of
this system is lower than that of site percolation. Furthermore, for interdependent ER networks,
in contrast to site percolation, bond percolation results show that p. varies nonlinearly with the
inverse of average degree. We also find, for the case of bond percolation where initial link failures
occur in all layers, that the critical percolation threshold is the same as that of site percolation,
but the behavior of the giant component above p. is different. Our research brings insight to

better understand the vulnerability of interdependent networks due to link failures.

Copyright © EPLA, 2020

Introduction. — In our real world, many infras-
tructure networks can be regarded as interdependent
networks [1-5]. Understanding their robustness against
cascading failures using percolation theory has attracted
much attention in recent years [6-18]. These studies have
shown that the behavior of interdependent networks is
very different from that of single networks and signifi-
cantly more vulnerable due to the dependency links. For
studying robustness of interdependent networks, Buldyrev
et al. [6] developed in 2010 a mathematical framework
which is based on iterations of the generating function.
Following this framework, many exciting results emerged.
Parshani et al. [7] found that reducing the coupling in-
terdependence strength leads to a change from a first
(abrupt) to a continuous second-order percolation tran-
sition. Huang et al. [9] mapped the targeted-attacks
problem to random attack and established the theoretical
robustness analysis framework for the interdependent net-
work under attacking high degree nodes. Shao et al. [10]

introduced an analytical framework for the case of a num-
ber of support and dependency relationships. The au-
thors of refs. [8,11-15,17] have studied how correlated
patterns of interdependencies affect the robustness of in-
terdependent networks. Liu et al. [18] recently studied
a node-to-link failure propagation mechanism and weak
interdependence across layers via a tolerance parameter.
A novel phenomenon named mixed percolation transi-
tions was found in this system. Yuan et al. [19] proposed
and studied a generalized percolation model that intro-
duces a fraction of reinforced nodes in the interdependent
networks that can function and support their neighbor-
hood. Wang et al. [20] have considered the situation where
nodes usually cooperate and form groups to enhance their
robustness to risks. More generally, Liu et al. [21] devel-
oped a theoretical framework based on generating func-
tions and percolation theory to understand the breakdown
and robustness of interdependent directed networks. Con-
sidering that many interdependent systems are spatially
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embedded researchers recently expanded the idea of in-
terdependent networks to a pair of spatially embedded
networks [22-29]. They found that spatial interdependent
networks are significantly more vulnerable.

In the above studies, many meaningful results have been
obtained for percolation in the interdependent networks
from different aspects. The common approach is that
the initial failure, which leads to cascading failures and
catastrophic events, occurs on nodes. However, in many
realistic examples, the initial failure may occur on links
instead of nodes. For instance, in the power grid system,
the case of transmission line failure is quite realistic and
occurs more frequently than shut down of a power station.
In economy, breaking of a trade relationship is more com-
mon than a company bankruptcy. In airline systems, it is
more likely to have a disruption of routes than the closure
of airports. Considering this case, Hackett et al. [30] stud-
ied the robustness of multiplex networks based on bond
percolation (BP). In this study, link failures could occur
in any layer of the multiplex network. However, note that
the authors considered as a measure of robustness the ex-
pected size of the giant connected component (GCC). This
measure is useful for cases when both types of links can
support each other such as two types of transportation
systems, e.g., subway and buses. However, when the two
types of links represent different functions, for example,
in transportation and power grid, one needs a more strict
measure represented by the simultaneous existence of both
the giant components in the multiplex, which is called the
mutually connected giant components (MCGC) [16]. Al-
though site and bond percolation are usually “equally”
treated for single network because in the majority of the
cases they belong to the same universality class [31], it
could be more complicated for interdependent networks
due to the dependency links and the diversity cases of
bond percolation which could occur in one layer or all lay-
ers. How do the cascading failures propagate (due to link
failures in one layer or in all layers of the interdependent
network)? Indeed, to the best of our knowledge this prob-
lem has not been addressed properly. In this work, we
model this phenomenon as a bond percolation happening
in one layer or in all layers of the interdependent networks
and study the robustness, via the condition of having a
MCGC, of such a system.

The most common mathematical framework for study-
ing the robustness of interdependent networks is based
on iterations of the generating-function formalism. How-
ever, for bond percolation in the interdependent networks,
it may lead to very complex formulations due to the mix-
ing of node failures and link failures that happen together.
We use a relatively simplified analytical framework known
as the self-consistent approach [16,32-36] to analyze the
critical behavior of interdependent networks for the case
where the initial failure occurs on links in one layer or in
all layers of the interdependent networks without going
through the cascading process. We present here the de-
tailed framework to study the nature of the critical phase

transition, the value of the critical threshold, and the size
of the MCGC for two-layer interdependent networks as
well as for n-layer interdependent networks. We particu-
larly focus on comparing the results of bond percolation
occurring in one layer to that of the site percolation (SP)
in the interdependent networks.

Cascading failure model. — The two-layer interde-
pendent network consists of two networks, namely A and
B, with degree distributions P4 (k) and Ppg(k), respec-
tively. Networks A and B both have N nodes, and each
node in network A randomly depends on only one node in
network B by a dependency link and vice versa. In our
bond percolation model, the same as the case of site
percolation, we define that a node can maintain its func-
tionality if it is in its giant component network and its de-
pendent node is also in the giant component of the other
network, i.e., it belongs to the mutually connected gi-
ant component (MCGC). The difference between site and
bond percolation on the interdependent networks is that
we randomly remove a fraction, 1 — p, of the internal links
instead of nodes from the networks.

The general mathematical solution based on the
self-consistent approach. — We firstly consider a sin-
gle network A whose size goes to infinite and suppose the
network is locally tree-like. Based on the self-consistent
approach, we define two central quantities to get the ba-
sic self-consistent equation, the probabilities of finding a
node in the giant component (GC) or a link leading to
the GC [16,35]. We assume that x is the probability that
a randomly selected link in network A leads to the giant
component, thus 1 — z is the probability that a randomly
chosen link does not lead to the GC. We define p7, as the
probability that the end node w of a randomly selected
link L in network A belongs to the GC. To calculate p%,,
we know the probability that following a link to find a
node u which has a degree k is Pé:;k. The probability
that this node is in the GC equals the probability that at
least one of its other k — 1 outgoing links must lead to the
GC, which is 1 — (1 — 2)*~! (note that (1 — x)*~! is the
probability that all the k£ — 1 outgoing links do not lead to
the giant component). Thus,

Pr= P?;f;k[l —(1—2)F 1.
k

(1)

From the definition of pfu, we know it has exactly the
same meaning of z, thus, we can write a self-consistent
equation for z:

_pA N~ Pa®k Lk
x—pLu—zk: o) 1-(1-2)""]

(2)

Equation (2) is the very basic self-consistent equation for
a single network.

Then we define p as the probability that a randomly
chosen node u in network A belongs to the GC. For a
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randomly selected node u, the probability that it is in the
giant component equals the probability that at least one
of its k links must lead to the giant component, which is
1—(1- 2)*. Thus, we have

Pt =" Palk)1 — (1—2)"], (3)

where P4 (k) is the probability that node u in network A
has degree k. From the definition of p* we know it is also
the normalized size of the giant component u*°. Thus,

(4)

Based on egs. (2) and (4), if we randomly remove a
fraction, 1 — p, of links from network A (i.e., there is a
fraction of p links remaining), hence, out of the original
probability, z, that a randomly selected link leads to GC,
only a fraction of p links actually remains. The new self-
consistent equation for x becomes:

u™ = py, .

()

The fact is that none of nodes is removed from the net-
works in bond percolation, unlike the cases of site per-
colation, the normalized size of the giant component u>°
is also the same as eq. (4). However, for the case of site
percolation, due to a fraction of p nodes remaining, we
have

A
u> =p-p,.

(6)
Substituting the result of a calculated from eq. (5) into
eq. (4) for bond percolation or eq. (6) for site percolation,
we can obtain the value of ©®°, namely, the fraction of
nodes in the GC.

Now we consider two fully interdependent networks
where we randomly remove a fraction, 1 — p, of links from
network A, for studying the phase transition behavior.
Following the above definition in single network, for two-
layer interdependent networks, the MCGC is the steady
state and is self-sustaining. Therefore, we define z(y) as
the probability that a randomly chosen link in network A
(B) leads to the MCGC. To calculate the probability x,
we should consider three constraints: first, the fraction re-
maining in the network A; second, the probability that the
end node u of a randomly chosen link in A belongs to the
GC, referred to as intra-layer condition; third, the prob-
ability that the node u’s dependent node u/, in network
B is also in the GC, referred to as inter-layer condition.
Only when both u and v« simultaneously belong to their
GC, v and v’ are in the defined MCGC and survive. Such
event happens with probability pfu . pf/. Therefore, for
calculating x, i.e., the probability that a randomly chosen
link in A leads to the MCGC, one can obtain

(7)

where p# is the non-removed links in the network A, i.e.,
the fraction remaining in the network A. If a fraction,

A A B
T =Dy "Pry Pu>s

1 — p, of links is removed initially, then p?* equals p, oth-
erwise p2 equals 1. According to egs. (1), (3), we obtain

T =p- zk: P?kff;k[l —(1—2)"1

S Pe(K)1 - (1—y)" .

(8)

Similarly, the probability that a randomly chosen link
in B leads to the MCGC is

(9)

Note that if we initially do not remove any links from
network B, so the first item pZ in eq. (9) is 1. If we also
remove the fraction, 1 — p, of links from network B, pZ
equals p. We will discuss this case later:

y=1. D0k, e
k

y=pF pP. - pi.

(kp)

TPk~ (1)), (10)
~

Due to the one-to-one support and dependent relation-
ship between network A and network B, the normalized
size of the MCGC, namely u®°, is the same for both net-
works. Because we did remove any node initially from the
network A or B, the probability that a randomly selected
node u in the MCGC is equal to the product of pf and
pf/, which is

[e )

u™ =uY =uF =p, - ph. (11)

According to eq. (3), we can obtain

k
x> Pek)i-(1-y")  (12)
k/

In principle, egs. (8) and (10) could be re-expressed as:
x = Fi(p,y) and y = Fy(p,z). If a system has first-
order phase transition, we know that at the critical point,
D = P, the two functions @ = Fi(p,y) and y = Fs(p, x)
meet tangentially with each other, p. satisfies the following
equation:
OF1(pe,y) OF3(pe; @)
Ay ox
If 4 as a function of p shows a first-order phase transi-
tion, we can find the solution of p.. By now, we derived the
formulas of u> and p.. Solving the above egs. (8), (10),
(12), we can get the mutual giant component size u>, a
key quantity indicating the extent of percolation. Solving
egs. (8), (10), (13), we can get the critical phase transition
point p.. We will consider the interdependent ER (Erdos
and Rényi) networks which have a relative simple degree
distribution as an example to perform the analytical solu-
tion for link failures in one layer and link failures in both
layers of the interdependent networks.

=1 (13)
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Fig. 1: Plot of u™
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as a function of p. The red line represents the theoretical result for the site percolation. The blue line

represents the theoretical result for bond percolation. The green circles are the site percolation simulation results and the black
stars are bond percolation simulation results. All the simulation results are obtained with 50 different realizations.

Bond percolation for removal in one layer. — We
now apply our theoretical framework on the interdepen-
dent networks formed by ER networks and obtain the so-
lutions of u* and p. for link failures. We assume that
the ER network A has an average degree (k4) and the
ER network B has an average degree (kg), both of them
follow a Poisson degree distribution:

k
Pa(k) = % e (ka), (14)
Pp(k) = (ks)" e (ks), (15)
k!

Substituting eqs. (14), (15) into egs. (8), (10), (12), we

obtain:
= pli—eEOna—eha), (1)
y= (-t e tin, )
u® = (1 — e kBlv)(1 — ¢ (katry, (18)

Solving egs. (16), (17) and (18), we can get the relation-
ship between u* and p, seen in fig. 1(a). In order to get
the formula for p., we introduce a new variable, v = e~ Y,
to reduce egs. (16) and (17) into a single equation. To
simplify the expression, we let (ka) = a, (kg) = b, so we
can get:

v = o~ (1= ") (1—7") (19)
The solution of eq. (19) can be obtained numerically for
any p. The critical point corresponds to the tangential

condition,

dy _ d -t
_ 2
or
1 =~"P[ap — (ap +b) ¥*] + br". (21)

Here, the critical values of v = v, and p = p. satisfy the
transcendental equations

v =e"
1 =

(A=) (1=7"),

]+ b7b. (22)

v*Plap — (ap + b) A

Furthermore, if a = b, we can get

1 ln(lln»;,YLa + 1)
Pe = ———

a In~y, ’ |
In~. hl(lf—vfaJrl)
1 _ 1 Ye . 17 Ca ca'
(e ) [ 0o
(23)

Equation (23) allows us obtain the value of p.. By now,
we have shown how to solve the values p. and u®°. In
general, for other degree distributions, for example that
of scale-free network, it is not feasible to get closed-form
expressions. However, it can be solved using numerical
solutions or graphical solutions demonstrated in fig. 2(c).

Results and discussion. — For easily comparing the
case of link failures and the case of node failures, we can
also get eqgs. (24), (25) and (26) for =, y and u* using
self-consistent probability method which agree with the
original work [6,16]. These equations are slightly different
from bond percolation,

T = p(l _ €—<kA>33)(1 _ €—<k13>y), (24)
y = p(l — e FBv)(1 — emthalr), (25)
> = p(l—e FBlY)(1 — emhalm), (26)

Intuition tells us that the critical point of bond perco-
lation is smaller than the critical point of site percolation.
It is hard to derive by formulas but easy to prove that
by using graphical solution method. Comparing fig. 2(c)
and fig. 2(b), the red curve representing eq. (17) does not
change with p and only the blue curve representing eq. (16)
moves toward right and down when p increases in fig. 2(c).
So with small p, these two curves can tangentially meet
each other. However, in fig. 2(b) the red curve always
shows a lower value than that in fig. 2(a), which leads to
a high value of p required to make two curves tangentially
meet each other.

To verify our theoretical framework and the conclusion
from the graphical solution method, we present both theo-
retical and simulation solutions for ER-ER networks, RR-
RR networks and SF-SF networks with (k4) = (k) = 4.
Note that for RR-RR both networks A and B are ran-
dom regular networks with Ps(4) = Pg(4) = 1. For
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(a) 1 (O @
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Fig. 2: (a) Bond percolation in the interdependent networks.

The blue line represents eq. (16) and the red line represents

eq. (17). At p = 0.43, the curves touch each other, where the slopes of the two curves are equal. It means that the percolation
threshold is p. = 0.43. (b) Site percolation in the interdependent networks. The blue line represents eq. (24) and the red line
represents eq. (25). At p = 0.614, the curves touch each other, where the slopes of the two curves are equal. It means that the
percolation threshold is p. = 0.614. (c) Graphically solving the critical value of p. for the case of bond percolation. The red
line represents eq. (16) and the blue line represents eq. (17). At p = p., the curves touch each other, where the slopes of the

two curves are equal. When p > p., there exist two intersection

points and we know the higher one is valid whose coordinates

correspond to the solution of x and y. When p < p., there is no intersection point which means the system collapses and a

MCGC is absent.

1
0 bond-simulate
0.8t O site-simulate
—bond-theory
. 0.6 || —site-theory
=
0.4
0.2
0
0 0.1 0.2 0.3 0.4
1/<k>

Fig. 3: p. as a function of ﬁ Note the linearity for site and

the nonlinearity for bond percolation.

SE-SF both networks A and B have the degree distribu-

Emax 1—X_ p1-x
tion of P4(k) = Pp(k) = (km::j-nl)[flji)(kminfl)I*]A’
Kmin = 2, kmax = 150, and the power law of this network is
A = 3. Substituting these formulas into egs. (8), (10), (12),
(13), the solutions could be found easily. Figure 1(a)—(c)
shows good agreement between the theoretical and simula-
tion results for the final giant component 4°° as a function
of p for ER-ER, RR-RR and SF-SF interdependent net-
works under random removal of 1 —p nodes or links in one
layer.

where

Figure 1 shows that the robustness of the network is
higher for the case of link failures than in the case of node
failures. However, the abrupt collapse (the failure cascade)
is larger in the case of link failures than in the case of node
failures. This can be understood from the fact that when
links fail, although the nodes are connected, the average
degree becomes smaller. At a critical point, the network
abruptly collapses, due to a long cascade of failure.

Furthermore, results of critical percolation threshold for
the ER-ER interdependent networks with different average

@ 1 gprio=s (®) 1 VR G—
—5-SPI<k>=4 e
0.8|-+BP/<k>=5 2 r 08 :
ey = (=]
SPI<ess -
0’06 i 8
Ap,, 0.4 BPIn=
04 . -T-SP.'rFZ
0.2 =#=BPIn=5
0.2 .
1 2 3 4 5 0z 04 08 08 1

Fig. 4: Results of NON system. (a) Comparing p. as a function
of n for bond percolation and site percolation for two values of
(k). (b) The expected size of MCGC, u™ as a function of p for
(k) =5,n=5and n=2.

k are shown in fig. 3. Surprisingly, in contrast to site
percolation, the bond percolation results show that p.
varies nonlinearly with %, as shown in fig. 3. Compared
with site percolation, when the value of (k) is between 4
and 6, the distance between the two lines (blue line and
black line) is larger than others, which means the robust-
ness of interdependent network in this range is maximally
different.

In addition, we study the the robustness of unbalance
interdependent networks, i.e., (ka) # (kp). We find that
the robustness of the interdependent network is stronger
in the case of initial failure occurring in a network with
higher average degree than occurring in a network with
lower average degree.

Solutions for n-layer interdependent networks
with one to one correspondence of dependent
nodes. — Based on the above self-consistent probabilities
method, we can easily develop an analytical framework
for studying a network formed by n fully interdependent
randomly connected networks, each composed of the same
number of nodes N. We study the robustness of such a
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Fig. 5: Plot of u™

as a function of p. The green stars represent site percolation simulation results. The red stars are simulation

results of bond percolation occurring in both layers of the interdependent networks. wu;° represents the size of MCGC for bond
percolation case and ug° represents the size of MCGC for site percolation case.

network of networks (NON) under link failures randomly
occurring in one of the networks, after which a fraction p
of its links survive. There are three types of loopless NON
topologies, chain-like, star-like or tree-like. No matter the
type of NON, the MCGC is the same due to the mutual
dependence [37].

If a fraction 1 — p of links are randomly removed from
layer 7, then it has a fraction p of links remaining in the
layer after the attack. Extending from eq. (7), we obtain
the probability that a randomly chosen link in network
leads to the MCGC as

v =p- i [Pl
j#i

(27)

where pi, represents the probability that node u’ of net-
work j is in its GC, which has directly or indirectly depen-
dent relationship with node u. Since no link is removed
initially from layer j(j # ), thus,

1#]
Similarly, since no node is initially removed, the proba-
bility that a randomly selected node is in the MCGC is

n

oo 7

= 1».
i=1

In a NON composed of n ER networks, we assume
that the initial attacks occur in the first layer and all
the n networks have the same average degree, that is

(28)

(29)

(k1) = (k2) = -+ = (k) = (k), so we can get simpli-
fied equations,

T = p( _<k>$)(1 —(k)y)n 1 (30)

y=(1—e Wn)1 - eyt (31)

u® = (1 —e 2y (1 — e=Ryyn—1, (32)

Similarly, solving eqs. (30)—(32), we can get p. as a func-
tion of n and u™ as a function of p, as shown in fig. 4(a)
and fig. 4(b), respectively. From fig. 4(a), we can see that
in both bond percolation and site percolation the vulner-
ability significantly increases with n due to increasing cas-
cading failures with n. We denote the critical percolation

point for bond percolation as p., and for site percolation
as pes. For the system with the same n but different k,
Apgp is greater than Ap.s and the difference between them
is increasing with n, as shown in fig. 4(a). This result
tells us that adding links to increase the average degree in
order to improve the robustness of n interdependent net-
works for bond percolation is more meaningful than for
site percolation. Figure 4(b) also shows that Ap,; is larger
than Apg, for the system with same (k) but different n,
which means that vulnerability of system becomes higher
with increasing of n for site percolation than for bond
percolation.

Bond percolation for removal in all layers. — If we
randomly remove a fraction, 1 — p, of links from network
A and also from network B, the first term in eq. (10)
should be p. In this case we know the self-consistent equa-
tions about x and y are the same as the site percolation.
Therefore, we can see that when bond percolation occurs
in all layers of interdependent networks, the system has
the same critical value of p. as in site percolation. How-
ever, due to the fact that all nodes remain in the network
for bond percolation, there exist different giant compo-
nents from the site percolation, i.e., u3® =p-up°. The
subscripts s and b refer to site percolation and bond per-
colation, respectively. In order to verify this, we also per-
form computer simulations. Results are shown in fig. 5.
From fig. 5, we can see that for two cases (site percola-
tion and bond percolation) the systems are collapsed at
the same time. The size of the MCGC for site percolation
is p times that for bond percolation due to the initially
removed nodes. Results are agree well with our theory.
From the above theoretical analysis, we can deduce that
this conclusion is suitable for n-layer systems.

Conclusion. — In this work, we explored the link
failure propagation mechanism by using the simplified self-
consistent probabilities method. Our mathematical frame-
work can significantly simplify the mathematical analysis
of these systems compared to the generating functions
method. We get two main interesting conclusions. First
of all, for bond percolation occurring in one layer, we
find, analytically and via simulations, that the critical
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percolation threshold of this system is usually smaller
than that of site percolation. This result is different from
a single random network cases where the same critical
threshold is found for both bond percolation and site per-
colation [16]. In contrast to site percolation on ER-ER in-
terdependent networks, the bond percolation results show
that p. varies nonlinearly with the inverse of average de-
gree. Secondly, for the case of bond percolation occurring
on all layers of the interdependent networks, we find that
the critical percolation threshold is the same with that of
site percolation, however the behavior of the giant com-
ponent as a function of p is different. This result agrees
with the result of single random networks. Besides, when
comparing the results of the bond percolation occurring
in one layer to that of site percolation, we find that while
the networks are more robustness, the collapse is more
serious in the case of bond percolation than in the case
of site percolation. In the NON system, even though the
vulnerability increases with n for bond percolation in one
layer, the trend is more gentle than in the case of site per-
colation. To summarize, the present study brings insight
to better understand the vulnerability of interdependent
networks due to link failures.
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