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Abstract
The importance of understanding human mobility patterns has led many studies to examine their
spatial-temporal scaling laws. These studies mainly reveal that human travel can be highly
non-homogeneous with power-law scaling distributions of distances and times. However,
investigating and quantifying the extent of variability in time and space when traveling the same air
distance has not been addressed so far. Using taxi data from five large cities, we focus on several
novel measures of distance and time to explore the spatio-temporal variations of taxi travel routes
relative to their typical routes during peak and nonpeak periods. To compare all trips using a single
measure, we calculate the distributions of the ratios between actual travel distances and the average
travel distance as well as between actual travel times and the average travel time for all origin
destinations during peak and nonpeak periods. In this way, we measure the scaling of the
distribution of all single trip paths with respect to their mean trip path. Our results surprisingly
demonstrate very broad distributions for both the distance ratio and time ratio, characterized by a
long-tail power-law distribution. Moreover, all analyzed cities have larger exponents in peak hours
than in nonpeak hours. We suggest that the interesting results of shorter trip lengths and times,
characterized by larger exponents during rush hours, are due to the higher availability of travelers
during rush hours. Thus, drivers are more motivated to shorten their trips in order to take new
passengers in rush hours compared to non-rush hours. We also find a high correlation between
distances and times, and the correlation is lower during peak hours than during nonpeak hours.
The reduced correlations can be understood as follows. Due to the high availability of passengers
in peak periods more drivers choose long distances to save time compared to nonpeak periods.
Furthermore, we employed an indeterminate traffic assignment model, which supports our
finding of the power-law distribution of the distance ratio and time ratio for human mobility. Our
results can help to assess traffic conditions within cities and provide guidance for urban traffic
management.

1. Introduction

Studying human movement behavior has been regarded as a long-standing fundamental and challenging

task. Understanding human mobility patterns is of much importance in many aspects, such as urban

planning [1, 2], traffic engineering [3, 4], epidemic spreading [5–7], and emergency management [8, 9].

Initially, researchers relied on using and analyzing human activity data collected from travel surveys or

observations [10, 11]. With the widespread use of mobile positioning technologies in people’s daily lives,
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massive individual mobility data becomes available, including GPS trajectories of vehicles [12, 13] and
humans [14, 15], cell phone records [16–18], and check-ins of online social network accounts [19, 20].
Such big data offers an excellent opportunity to uncover human mobility patterns more accurately and
understand their underlying mechanisms more deeply.

In the last decade, human mobility patterns on different geographical scales have been extensively
studied. In large scale of space, including trips between countries or cities, many studies have found that
statistical patterns of human movements exhibit a long-tail Lévy walk characteristics [21–24]. For example,
the aggregated trip lengths and waiting time distributions characterizing human trajectories have been
found to be fat-tailed power laws through investigating the dispersal of bank notes [21] and mobile phone
records [22]. In order to understand the observed scaling laws, several microscopic models have been
developed for the movement process of individuals to capture dynamic features [21, 23, 25, 26], and a
number of macroscopic models have been proposed to predict the mobility flow between spatial locations
[27–32]. Short-scale mobility within the range of a city has attracted particular attention from researchers,
as cities are concentrated areas of human activities, and intra-city movement is a significant part of citizens’
lives. However, unlike the mobility patterns observed at large spatial scales, human movement within cities
tends to exhibit different scaling behaviors. Jiang et al [33] found that the distance traveled by cab
passengers follows a two-phase power-law distribution. Yao and Lin [13] analyzed taxi trajectories in a
South China city and found a power-law behavior of travel distances. In contrast, various other studies on
datasets of taxis [34–36], private cars [12], and mobile phones [17] show exponential distributions of travel
distances or displacements. Similarly, studies of the traveling time have found different distributions such as
exponential distribution [35] and lognormal distribution [34]. Several works have been based on
simulation models to reproduce the observed distributions [13, 19, 33] and explain them from different
perspectives, such as the place density [19], time and fare [13]. These researches have revealed that human
movements have a very broad range of scales in terms of time and distance. Furthermore, earlier studies
analyzed the route factor [37], the ratio of the travel distance to the Euclidean (straight-line) distance, to
examine travel distance characteristics [38, 39]. However, these studies have been mainly interested in
exploring the relationship between route factors and Euclidean distances, ignoring the spatio-temporal
scaling laws of route variation that can be reflected by ratios. Therefore, our work is to examine the scaling
laws of the extent of variations with respect to the typical (average) distance and time for the same origin
destinations (OD) pair. For example, we ask how many trips deviate from the typical travel path of a given
OD and how much do they deviate?

In this paper, we explore the scale of deviations between single trip paths and their typical (average) path
by measuring the distributions of the distance ratio and the time ratio between a single trip and the average
trip for all OD pairs. For each OD, we evaluate the average distance and time of all taxis and analyze the
distribution of the above ratios for all ODs. Based on high-resolution taxi data from five cities, we
surprisingly find, in all analyzed cities, scaling characterized by long-tail power-law distributions for both
distance and time ratios and compare the scaling during peak and nonpeak periods. Interestingly, we find
that in rush hours the broadness of the variations is narrower compared to non-rush hours. We explain
these shorter relative distances and times by the availability of significantly more passengers in rush hours,
thus motivating the drivers to make shorter trips in rush hours. Additionally, based on an indeterminate
traffic assignment model [40], we support the scaling laws of these two ratios. Our findings suggest the
existence of intrinsic behavior behind taxi trips, resulting from drivers’ individual choices and influenced by
drivers’ estimated travel costs (primarily travel time). The scaling laws found here could potentially help to
understand urban traffic conditions and to develop appropriate traffic management methods.

2. Results

Our study uses taxi datasets from three major cities (Beijing, Chengdu, and Shenzhen) in China and two
major cities (New York and Chicago) in the United States (details are in SI (https://stacks.iop.org/NJP/24/
043020/mmedia), table S1). For these five cities, only weekdays’ data are studied. These datasets include
5133 615 trips in Beijing during 10-weekdays, 7216 951 trips in Chengdu during 14-weekdays, 4002 107
trips in Shenzhen during 10-weekdays, 7339 443 trips in New York during 20-weekdays, and 2317 823 trips
in Chicago during 40-weekdays. The data includes for each trip, the taxi id, pick-up timestamp, drop-off
timestamp, pick-up location, drop-off location, travel distance, and travel time.

To study the diversity of travel routes, we divide the area of the four cities except for Chicago into square
grids (figure 1(A)) with a side length of 0.5 km, and Chicago is divided by the official census area (SI, figure
S1). A grid or census represents a traffic zone. Each taxi trip starts within its origin zone (O) and ends
within its destination zone (D). Thus, each OD pair is assigned with many taxi trips during the day. In
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Figure 1. Taxi trips illustration. (A) Grid representation of a city. We divide the city area into a grid of sizes 0.5 × 0.5 km. The

Euclidean distance of the OD pair is defined as the distance between the grid centers dOD =
√

(x1 − x2)2 +
(

y1 − y2

)2
. (B) Taxi

trips paths. Illustration of an OD pair (red squares) in Beijing. Many possible paths are connecting this OD pair, and most trips
follow the typical path (green circles) with a length close to the average distance, but there are some exceptions. Trips follow a
detour path (red circles), which might be in order to avoid congestion, gain more benefits, or due to visiting multiple
destinations, and are characterized by a longer distance than the average distance. The length of the detour path here is about
twice as long as the typical path. (C) The travel distance and (D) travel time distributions of this OD pair. One can see that 7.21%
of trips are even longer than the detour path in (B), and some are even seven times longer than the average distance (3.47 km).
Likewise, travel times vary significantly, with some more than six times longer than the average time (10.78 min).

figure 1(A) we demonstrate the grid and the OD while in figure 1(B) we show two different travel routes
between the same OD pair, including the typical path with a length close to the average distance and the
detour path with a length much longer than the average distance. In this demonstration the distance
traveled along the detour path is approximately twice the length of the typical (average) path, but the time
they spent may be longer or shorter. Additionally, between this OD pair, there are trips that are even seven
and more times longer than the average (figure 1(C)). Thus, we ask here how many deviated trips exist and
how much they deviate in both distance and time in the whole network.

Considering the temporal variability of taxi travel [41], we distinguish and divide the taxi trips into two
periods: peak hours and nonpeak hours. Peak hours vary between cities and are the period of the day with
the highest traffic flow (around 7:00–9:00 and 17:00–19:00 in most cities), and nonpeak hours are all other
times. Then, we demonstrate the scales of single trip paths deviating from the average travel path by
analyzing the distribution of the distance ratio rd and the time ratio rt. The distance ratio of a single trip, rd,
is defined as the actual travel distance of the trip divided by the average travel distance of all trips in this
OD, which is calculated separately for peak hours and nonpeak hours. Thus, we obtain the distance ratio rd

in peak time and nonpeak time for all OD pairs. The time ratio of a single trip, rt, is determined as the
actual travel time of the trip divided by the average travel time. Also, the time ratio rt in peak time and
nonpeak time are derived for all OD pairs. As seen in SI, figures S2 and S3, the distributions of distance
ratios and time ratios during peak and nonpeak hours have tent shapes, with the highest probability density
when the ratio is about 1 and decreasing when the ratio is smaller or larger than 1. The distribution of these
two ratios can be divided into two segments at the ratio of 1. The part with ratios smaller than 1 has a
narrow distribution and lacks regularity, while the part with ratios larger than 1 has a wider distribution.
The large ratios represent long detour routes with ‘ tortuosity’ [42] geographical features, which are more
meaningful in terms of actual traffic [43, 44]. In this paper, we mostly focus on the ratios larger than 1 (i.e.,
rd > 1 and rt > 1), which means that single trip distances and times are longer than the average distance
and average time.

After extracting the distance ratio and time ratio for all OD trips, we explore their distribution function
forms by using the Akaike weights (see methods). The results of Beijing and New York are shown in
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Figure 2. Probability distributions of distance ratios and time ratios of taxi trips. The distributions of the distance ratio for all
OD pairs in (A) Beijing and (C) New York follow a power law for both peak and nonpeak hours. The lines represent the best fit
above a threshold evaluated in SI, figure S4, and the exponents are obtained using the MLE based on these thresholds. Similar
power-law distributions are found for the time ratios in (B) Beijing and (D) New York. In both the distance ratio and time ratio
distributions, the exponent of peak hours (i.e., 7:00–9:00 and 17:00–19:00) is larger than that of nonpeak hours. Other cities
show similar results and can be found in the SI, figure S5.

figure 2, and the results of Chengdu, Shenzhen, and Chicago are shown in SI, figure S5. Interestingly, the
distributions of distance ratios rd during peak (Pp(rd)) and nonpeak (Pn (rd)) periods of these five cities are
best fitted by a power-law scaling,

Pp(rd) ∼ (rd)−α1 , (1)

Pn (rd) ∼ (rd)−α2 . (2)

Here, α1 and α2 are the power-law exponents during peak and nonpeak hours, respectively. The
power-law distributions of distance ratios suggest that, though many travel distances are close to the average
distance, a non-negligible number of larger scales of travel distances also exist in each city, including
considerably long travel distance compared to the mean distance. On one hand, with the frequent
occurrence of traffic congestion in urban areas, taxi drivers may take long detours to avoid the congested
roads. On the other hand, drivers may also take large distances for the purpose of increasing revenue. These
behaviors may be the origin of the power-law distribution of distance ratios. Such phenomenon also implies
that the distance heterogeneity of taxi trips can be described by a single power-law function.

We also find that the exponent α1 in peak hours is larger than the exponent α2 in nonpeak hours in all
five cities (see table 1 and SI, table S2). This finding indicates that all cities are likely to have less large travel
distances in peak hours compared to nonpeak hours. A possible reason for this will be discussed later.
Further, we use the Kolmogorov–Smirnov (KS) test (see methods) to examine whether the exponents of
distance ratios of each day have a similar behavior. Since the data for a single day is limited and the results
are heavily influenced by noise, we combine two adjacent days to get reasonable statistical results. We show
the results of Beijing and New York in figures 3(A) and (C), and observe that the distributions of peak
exponents and nonpeak exponents for these two cities are relatively narrow and significantly distinguishable
from each other. Moreover, the peak exponents are usually larger than the nonpeak exponents. Similar
results are also found in other cities (SI, figure S6). It is plausible that the different scaling laws of the
distance ratio found in different travel periods of all cities reflect the different structural characteristics of
travel in different cities.

Next, we analyze the scaling properties of time ratios rt. We show the distributions for Beijing and New
York in figure 2, and for the other three cities in SI, figure S5. We find that the Akaike weights (see methods)
favor a power-law distribution for time ratios rt in both, peak hours (Pp(rt)) and nonpeak hours (Pn(rt)),

Pp(rt) ∼ (rt)
−α3 , (3)

Pn(rt) ∼ (rt)
−α4 , (4)

with the exponent α3 for peak hours and the exponent α4 for nonpeak hours. The power-law distributions
reveal that there is a broad range of time ratios, including cases where single trip times are much longer
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Table 1. Taxi routes parameters. The power-law exponents of the distance ratio and the time
ratio are given for peak and nonpeak hours in Beijing and New York. Note that they are found to
be larger in peak hours than in nonpeak hours. Higher exponents indicate fewer longer trips
than the typical path. We hypothesize that this might be related to the smaller average waiting
time in peak hours compared to nonpeak hours. Thus, the driver has a motivation to shorten the
trip and take a new passenger. Moreover, the exponents of the distance ratio of New York and
Shenzhen (see SI, table S2) are significantly larger than those of other cities, which might be
related to their larger main road density (see SI, table S2), making it easier for drivers to take
shorter detours. The parameters of other cities can be found in the SI, table S2.

Beijing New York

Peak (p) Nonpeak (n) Peak (p) Nonpeak (n)

rd exponent 2.91 2.68 3.69 3.42
rt exponent 3.38 3.10 4.47 4.12
τm (min) 10.59 ± 0.54 20.55 ± 1.00 9.07 ± 1.15 19.10 ± 1.56
Main road density (km km−2) 4.15 ± 3.68 7.75 ± 4.31

Figure 3. The distribution of scaling exponents of the distance ratio and time ratio on different days. The distribution of
power-law exponents of the distance ratio during peak and nonpeak hours on pairs of consecutive days in (A) Beijing and
(C) New York. Both cities show power-law distributions for all days. Moreover, the KS test of the exponent distribution in peak
and nonpeak hours shows that the p-value (P) is less than 0.05, revealing that the distributions of the peak and nonpeak
exponents are significantly different from each other. Similar behavior is also found for the power-law exponent distribution of
the time ratio on pairs of consecutive days in (B) Beijing and (D) New York. For the exponent distribution of distance ratios and
time ratios, the peak exponents are mostly larger than the nonpeak exponents. Other cities show similar results and can be found
in the SI, figure S6.

than the average. This scaling law can help us to understand the diversity of taxi travel time, estimate the
quality of taxi routes and evaluate the traffic conditions of cities.

The power-law exponents of time ratios exhibit a similar pattern to those of distance ratios: the
exponent α3 in peak period is larger than the exponent α4 in the nonpeak period (see table 1 and SI,
table S2). The results suggest that it is less likely to have large travel times in peak periods compared to
nonpeak periods. Also, we use KS test (see methods) to compare the distributions of peak exponents and
nonpeak exponents of time ratios per day. The results demonstrate that the peak exponents are generally
larger than the nonpeak exponents (figure 3 and SI, figure S6). The time ratios in peak and nonpeak periods
follow a different power law, which implies different traffic properties in the two periods and different
strategies should be adopted for traffic management.
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Further, we ask whether the characteristics of the distributions and exponents of the distance and time
ratios are also valid for specific ODs. To this end, we select for the analysis two single ODs with a large
number of trips in New York. As seen in SI, figure S7, both distance and time distributions for these two
specific ODs obey a power law and the exponents are again larger for peak periods than for nonpeak
periods. In addition, we also use KS test (see methods) to examine whether these two ODs have similar
behavior in terms of the exponents of distance and time distribution on each day. We find that for a single
OD, the distributions of the peak and nonpeak exponents are distinguishable and the peak exponents are
usually larger than the nonpeak exponents (SI, figure S8). Thus, our results suggest that the scaling laws
found are not only macroscopic for the whole urban system, but also microscopic for single ODs.

The following question can be naturally raised: though the network structural topology of the same city
is the same, why do the distance ratio and the time ratio behave differently in the different travel periods?
More specifically, why are the exponents systematically larger in peak hours, i.e., shorter detour trips? A
plausible explanation is as follows. The travel demand in peak hours is far greater than that in nonpeak
hours, yielding massive available passengers to drivers. Thus, drivers probably prefer not to travel long
distances and times during rush hours because they can easily find new passengers and increase their
revenue. To test our hypothesis, we calculate the waiting time τ of taxis, i.e., the time interval between two
adjacent occupied trips, in peak hours and nonpeak hours. As seen in SI, figure S9, the mean value of the
waiting time during nonpeak hours in all five cities is typically twice as long as that during peak hours.
Moreover, we also examine the average waiting time τm in peak and nonpeak periods for each day (SI,
figure S10), and observe that the average waiting time in peak periods is always significantly less than that in
nonpeak periods. The mean and standard deviation of the average waiting time τm are summarized in
table 1 and SI, table S2. Thus, our results support the hypothesis that since drivers can easily find passengers
they are motivated to shorten their trips during peak periods, so that large-scale travel distances and travel
times are less likely to occur during this period.

Furthermore, we also notice that the power-law exponents of the distance ratio rd of Shenzhen and New
York are significantly larger (i.e., shorter distances) than those of the other cities (see table 1 and SI, table
S2), which arises the question of the origin to this phenomenon. We hypothesize that it might be related to
the efficiency of the road network structure of the city. To this end, we examine this issue from the
perspective of road network density [45] (SI, figure S11). It is reasonable to assume that higher density of
major streets leads to more efficient traffic. To test this, we calculate in all five cities, the road densities
separately for all five types of major roads (all), including motorway, trunk, primary, secondary and tertiary,
as well as for the first four types of major roads (main). The road density distribution is shown in SI, figure
S12, noting that the mean values of all and main road densities are larger in Shenzhen and New York than
in the other cities, especially for the main road density (summarized in table 1 and SI, table S2). Thus, a
reasonable explanation for the large exponents of distance ratios is that the road conditions may be better in
Shenzhen and New York (the main road density is larger), making it easier for drivers to perform shorter
detours (exponents of the distance ratio are larger).

Focusing on the distance ratio rd and time ratio rt of the five cities, especially New York, we find that
these two ratios can be a large number (in figure 2 and SI, figure S5). Our tests suggest that the large values
of the ratio (rd and rt) during peak and nonpeak periods are dominated by relatively short Euclidean
distances of OD pairs dOD. As seen in SI, figures S13 and S14, the majority of trips with ratios larger than
ten occur between OD pairs with dOD shorter than 4 km. Moreover, we divide all trips into different groups
(see SI, table S3) according to the Euclidean distance of OD pairs dOD, and explore the distribution of the
distance ratio rd and time ratio rt during peak and nonpeak hours for each group. The results show that a
large fraction of trips in each city (over 85% in four cities except Chicago which is 74%) occur between OD
pairs with dOD less than 4 km, and the Akaike test indicates that the power-law mainly appears in the travel
between these OD pairs (see SI, table S3).

We have separately analyzed above the spatio-temporal scaling laws of taxi trips, but an important
question is what is the relationship between times and distances, and which new insights can we learn from
such a relation? In fact, the time required to travel a long taxi route may be long or short due to traffic
conditions. It is critical to understand the correspondence relation between distances and times. For this, we
first analyze the correlation between distances and times at the average level of trips between OD pairs, and
then explore the correlation between distance ratios and time ratios at the single trip level. Figures 4(A) and
(C) show the relationship between average distance dm and average time tm for all OD pairs in Beijing and
New York. We observe that average distances and average times are significantly and highly correlated by
calculating the correlation C and significance W (methods) (see SI, figure S15). Interestingly, we also find
that the correlation C is smaller in peak hours compared to nonpeak hours. Similar results are also found in
other cities (SI, figures S16(A), (C), and (E)). For a plausible reason see below. Further, to explore the
changes in the correlation between distances and times in different distance ranges, we extract datasets with
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Figure 4. Average distance vs average time in peak and nonpeak hours for (A) Beijing and (C) New York. Here, we show the
scatter plots of the average distance vs average time for all OD pairs. C and W represent the correlation coefficient and
significance, respectively. As seen, there is a significantly high correlation between the average distances and the average times,
and the correlation is larger in nonpeak periods compared to peak periods. The slope V of the fitted line (red line) represents the
average velocity (in km h−1) calculated from the ratio between the average distance and average time. The average velocity is, as
expected, smaller at peak compared to nonpeak due to traffic jams. Correlation between average distance and average time
during peak and nonpeak periods at different average distance ranges for (B) Beijing and (D) New York. We extract datasets with
average distance of OD pairs dm larger than a given threshold for peak and nonpeak periods separately, and then calculate the
correlation between the average distances and average times for all OD pairs in each dataset. We set eight thresholds, i.e., 0, 1, 2,
3, 4, 5, 6, 7 km. Other cities show similar results and can be found in the SI, figure S16.

average distances of OD pairs larger than a given threshold (i.e., 0, 1, 2, 3, 4, 5, 6, 7 km) and then calculate
the correlation between average distances and average times for each dataset. The results for Beijing and
New York are shown in figures 4(B) and (D), as the average distance threshold increases, the correlation
decreases. Also note that the correlations are smaller during peak hours compared to nonpeak hours, which
is consistent with the results for other cities (SI, figures S16(B), (D), and (F)). Our findings suggest that
(i) the longer the typical distance of OD pairs, the larger the fraction of taxis that do it in order to save time
and (ii) more long-distance trips are made to save time during peak periods compared to nonpeak periods.
As discussed above, the differences between peak and nonpeak hours may be caused by the availability of
more passengers during peak hours, and saving time means higher revenue. To test whether the above
findings are also present microscopically, i.e., in single ODs, we analyze the relationship between distance
and time for two specific ODs with large enough statistics (SI, figures S17(A) and (C)). We observe that the
correlation between distance and time for a single OD, although smaller than the correlation between the
average distance and average time of all OD pairs, is still larger in nonpeak periods than in peak periods. In
addition, we also explore the correlation at different distance ranges for specific ODs (SI, figures S17(B) and
(D)) and obtain that the correlation is smaller in peak hours than in nonpeak hours and the difference
becomes larger as the distance threshold increases.

Next, we examine whether the correlation between distance ratios and time ratios of individual trips has
a similar behavior. To this end, we use a similar way to extract the datasets with distance ratios of trips
larger than a given threshold (of 1, 2, 3, 4, 5, 6, 7) and calculate the correlation between the distance ratio
and time ratio for each dataset. As seen in SI, figure S19, as the distance ratio threshold increases, the
correlation of nonpeak periods slightly decreases, while the correlation of peak periods decreases
significantly and is typically smaller than the nonpeak correlation. Our results support the above hypothesis
from a different perspective: trips that take long distances to save time are more likely to occur during peak
periods, in particular for trips with large distance ratios, than during nonpeak periods.

To further test and support our hypothesis, we calculate directly the fraction of drivers who choose long
distances to save time during peak and nonpeak hours, which we call saving drivers. We extract datasets
with distance ratios larger than a given threshold (from 1 to 3 with an interval of 0.2) and calculate the
fraction of drivers with time ratios smaller than 1 in each dataset. To eliminate noise, only drivers that do it
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Figure 5. Distance ratio and time ratio distributions based on the (A) original demand and (B) four times the original demand
using the traffic assignment model. Using the Akaike weights (see methods), we find that the distance ratio and time ratio
distributions for all OD pairs follow a power law. The lines represent the best fit above the calculated threshold (2 for distance
ratios and 1.5 for time ratios) and the exponents are obtained using the MLE based on their thresholds. A similar behavior is
found for the distributions of the two ratios when increasing the demand to four times its original size. Moreover, the power-law
exponent of the increased demand is found to be larger than that of the original demand, which is in agreement with the findings
in the real data.

for more than 50% of their trips are considered. That is, we consider a driver to be a true saving driver only
if most of his/her long distance trips have time ratios smaller than 1. We find indeed, that the fraction of
saving drivers during peak hours is higher than that during nonpeak hours in all five cities, with New York
having the highest fraction at 20% in peak hours and 10% in nonpeak hours, while Beijing, another capital
city, has a relatively low fraction at 11% in peak hours and 7% in nonpeak hours when the distance ratio
threshold is 1.2 (see SI, figure S20). Our results reveal that, during peak hours, more drivers try to shorten
the time of their trips by choosing long distances to save time. This can explain the lower correlation
between distance ratios and time ratios during peak hours compared to nonpeak hours.

To further explore the possible origin of the power-law distribution of the distance ratio and time ratio
for taxi drivers, we analyze a commonly used traffic assignment model, the stochastic user equilibrium
(SUE) model [46] (see SI, note 1). In this model, we use as input the trips in each of the OD pairs, and then
analyze and test the distribution of these two ratios. Actually, the travel cost of each route known by drivers
is only an estimate of the actual cost. The SUE model assumes that drivers choose the route with the
minimum perceived (estimated) cost. In the equilibrium system state, no driver can reduce his perceived
cost by unilaterally changing paths. Therefore, the SUE model is an indeterminate traffic assignment
method, and multiple paths are chosen with different probabilities during path selection. Based on the SUE
model, we assign a given travel demand D to each path in a small-scale network, the well-known Sioux Falls
network (in SI, figure S21), which is commonly used for numerical studies of traffic assignment [47–49].
The path-based method of successive averages is used to solve our SUE problem (see SI, note 2). The path
choice set for each OD pair is generated before the assignment, using the k-shortest path method [50] and
setting k to 7. Also, we assume that the dispersion parameter θ, a measure of drivers’ perception of travel
costs, is equal to 1 based on empirical evidence [51].

After the traffic assignment, we obtained the trips of each path and calculated distance ratios and time
ratios for each OD pair. Figure 5(A) shows the distribution of the distance ratio and time ratio for the given
original demand, which is found to follow a power law. Moreover, we find that increasing the original
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demand to a certain level, such as four times the original demand (figure 5(B)), the power-law exponent of
these two ratios also increases. Thus, the model results are consistent with the findings from the actual data:
when travel demand highly increases, like during peak hours, traffic can be very congested, resulting in
higher perceived travel costs for drivers, and thus they are less likely to take large distances and large times.
The model suggests that the power-law distributions of the distance and time ratios are the result of drivers’
individual choice behavior and are influenced by random utility (i.e., drivers’ perceived travel costs).
Furthermore, sensitivity analysis of the travel demand D, the dispersion parameter θ, and the size of the
path choice set k are performed to understand the impact of these factors on the distribution of these two
ratios (shown in SI, figure S22).

3. Conclusions

Human mobility within cities is strongly correlated with urban traffic. Increased travel exacerbates traffic
congestion, and traffic congestion, in turn, influences people’s choice of travel routes. Earlier studies have
shown that human movement has very broad scales represented by long-tail power-law distributions of
traveling times and distances [13, 33]. However, the extent of spatio-temporal variation in people’s travel
routes for the same OD pair, which is important for mitigating traffic problems, has not been studied so far
to the best of our knowledge. Based on taxi data of five metropolises in two countries, China and USA, we
explored the scaling and universality features of the variability of intra-city human travel routes.
Considering the significant difference in traffic conditions during peak and nonpeak hours, these two
periods are analyzed separately. We examine the distance ratio and time ratio to measure the scale of
spatio-temporal deviation of actual travel paths from the average (typical) travel path. We find that both
ratios follow long-tail power-law distributions. This result suggests that a significant fraction of travel routes
are much longer than the average route (see SI, table S4). Surprisingly, we also find that the power-law
exponent is larger during peak hours than during nonpeak hours in all analyzed cities. Our results suggest
that shorter travel distances and times in the peak period are due to the availability of more passengers
represented by the lower average waiting times in this period, so that drivers are motivated to shorten their
trips and take another passenger. Therefore, with the aid of traffic management measures, such as staggered
travel, it could be possible to change drivers’ route selection decisions by adjusting the taxi demand. We also
conclude that the power-law exponents of the distance ratio in different cities are affected by the urban road
network structure, and some cities are significantly less likely to generate long distances, possibly due to
their high density of major roads. Thus, increasing the density of efficient roads could provide a tool for
reducing long detours. Moreover, we find a high correlation between distances and times, and the
correlation is smaller in peak hours than in nonpeak hours. This result could be understood by the fact that
during peak hours, due to the availability of many passengers, more drivers try to shorten the time by
choosing long distances and thus increase their revenue. Finally, we apply an indeterminate traffic
assignment model [40] to try to understand the origin of the scaling power-laws for the distributions of the
distance and time ratios. The model results demonstrate that the power-law scaling of taxi routes is indeed
the outcome of drivers’ individual choices and is influenced by random utility, which provides insight into
transportation economic modeling. The present study can help to assess urban traffic conditions and
provide guidance for urban traffic management, and can also be used to evaluate the money-loss of
passengers based on the fraction of travel with very large distance ratios and time ratios.

4. Methods

Taxi dataset. To have a reliable measurement, we exclude trips in which both O and D are in the same zone
and only study OD pairs with over 100 trips.

Akaike weights. Using this method, we test whether the given dataset x = {x1, x2, x3, . . . , xn} fits better
with a power-law tail or an exponential tail [52–54]. Their probability density functions p (x) = Cf (x),
consisting of the basic function form f(x) and the appropriate normalized constant C, are shown below.
Considering the tail to start at xmin, the probability density function of the power-law distribution is
defined as:

p(x) = (α− 1)xα−1
min x−α, (5)

where (α− 1)xα−1
min is the normalized constant and α is the power-law exponent. The probability density

function of the exponential distribution is defined as:

p(x) = λeλxmine−λx, (6)

where λeλxmin is the normalized constant and λ is the exponential rate parameter.
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The fitting parameters are computed by the maximum likelihood estimation (MLE) [52, 53]. The
Akaike information criterion (AIC) [54] is employed to choose the best-fitted distribution. For the
candidate model i(i = {1, 2}), the corresponding AIC score is computed by AICi = −2 log Li + 2Ki, where
Li is the likelihood function and Ki is the number of parameters in the model i.

The Akaike weights can be considered as relative likelihoods being the best model for the observed
data. Let

AICmin = min {AICi} , (7)

Δi = AICi − AICmin. (8)

Then the Akaike weight Wi is calculated by

Wi =
e−Δi/2

e−Δ1/2 + e−Δ2/2
. (9)

An Akaike weight is a normalized distribution selection criterion [55]. Its value is between 0 and 1. The
larger the value is, the better the distribution is fitted.

Calculation of correlation and significance. To measure the correlation between distance and time, we
calculate the Pearson correlation coefficient and the significance indicator between the two variables.
Pearson coefficient can reflect the degree of linear correlation between two variables. For two random
variables X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}, the correlation coefficient CX,Y is

CX,Y =
cov (X, Y)

σXσY
=

E [(X − μX) (Y − μY )]

σXσY
, (10)

where μX and μY are the mean values of X and Y, and σX and σY are the standard deviations of X and Y.
To determine whether the correlation between X and Y is significant, we shuffle the data series of the

variable Y, and then calculate the cross-correlation coefficients CX,Y(k) of variables X and Y(k) as follows,

CX,Y(k) =
cov (X, Y (k))

σXσY
=

∑n
i=1

(
xi − X

) (
yi+k − Y

)
√∑n

i=1

(
xi − X

)2
√∑n

i=1

(
yi+k − Y

)2
, (11)

where Y(k) indicates that the data series of Y is circularly shifted to k data points, k = 0, . . . , n − 1. If k = 0,
CX,Y(k) = CX,Y.

After determining the cross-correlation coefficients CX,Y(k) of each Y(k), the significance indicator WX,Y

of variables X and Y can be given

WX,Y =
CX,Y(0) −mean

(
CX,Y(k∗)

)
std

(
CX,Y(k∗)

) , k∗ = 1, . . . , n − 1. (12)

Two-sample KS test. We use the KS test to compare two sample distributions (two-sample KS test). The KS
statistic is:

Dn,m = sup
x
|F1,n (x) − F2,m (x)|, (13)

where F1,n and F2,m are the empirical distribution functions of the first and second samples, respectively,
and sup is the supremum function.

The functions F1,n and F2,m are defined as:

F1,n (x) =
1

n

n∑
i=1

I[−∞,x] (Xi) , (14)

F2,m (x) =
1

m

m∑
i=1

I[−∞,x] (Xi) , (15)

where n and m are the sizes of the first and second samples, respectively. I[−∞,x] (Xi) is the indicator
function, which is equal to 1 if the observation Xi < x and equal to 0 otherwise.

For large samples, the null hypothesis is rejected at significance level α if

Dn,m > c (α)

√
n + m

n · m
, (16)

where the c(α) value can be obtained by c (α) =
√
− ln

(
α
2

)
∗ 1

2 [56]. We set the significance level α to 0.05,

and the corresponding c(α) is 1.358.
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Traffic assignment. Traffic assignment is a mature field that aims to integrate travel demand with road
infrastructure, to better understand traffic, and has been extensively studied by urban and transportation
planners. In this work, we use a SUE model for traffic assignment [40] (see SI note 1). This model takes into
account the uncertainty of travel times in the complex transportation system [57]. A static, path-based
assignment algorithm is then employed for the solution (see SI note 2).
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