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Abstract
The models of k-core percolation and interdependent networks (IN) have been extensively studied
in their respective fields. A recent study has revealed that they share several common critical
exponents. However, several newly discovered exponents in IN have not been explored in k-core
percolation, and the origin of the similarity still remains unclear. Thus, in this paper, by
considering k-core percolation on random networks, we first verify that the two newly discovered
exponents (fractal fluctuation dimension, d ′

f , and correlation length exponent, ν ′) observed in
d-dimensional IN spatial networks also exist with the same values in k-core percolation. That is,
the fractality of the k-core giant component fluctuations is manifested by a fractal fluctuation

dimension, d̃f = 3/4, within a correlation size N ′ that scales as N ′ ∝ (p− pc)−ν̃ , with ν̃ = 2. Here

we define, ν̃ ≡ d · ν ′ and d̃f ≡ d ′
f/d. This implies that both models, IN and k-core, feature the same

scaling behaviors with the same critical exponents, further reinforcing the similarity between the
two models. Furthermore, we suggest that these two models are similar since both have two types
of interactions: short-range (SR) connectivity links and long-range (LR) influences. In IN the LR
are the influences of dependency links while in k-core we find here that for k= 1 and k= 2 the
influences are SR and in contrast for k⩾ 3 the influence is LR. In addition, analytical arguments for
a universal hyper-scaling relation for the fractal fluctuation dimension of the k-core giant
component and for IN as well as for any mixed-order transition are established. Our analysis
enhances the comprehension of k-core percolation and supports the generalization of the concept
of fractal fluctuations in mixed-order phase transitions.

1. Introduction

The k-core model has been studied extensively since its introduction in 1960 to explore the question of what
is the minimal number of colors required for covering graphs [1–5]. The model has a significant impact on
the field of network science, and has been used to describe real-world systems such as social networks [6], the
Internet [7], ecological networks [8], transportation networks [9], influential spreaders [10], etc. The k-core
model can facilitate a better understanding of the organizational structure and behavioral characteristics of
systems, by identifying the hierarchy of node connection patterns as well as the most densely connected
subgraphs within a network called nucleus [11, 12]. The model can also provide insights in revealing the
robustness and vulnerability of networks under attacks or failures [13–15].

The k-core percolation, recognized as an important application of the k-core model, primarily
investigates the phase transition phenomena and critical behavior in network breakdowns. This process is
accomplished by theory and simulations of the failure and disintegration of a network. One can initiate the
failure through random removal of nodes, and then iteratively prune the graph by eliminating all nodes with
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a degree below k until the largest k-core remains. A k-core is the giant component of the original graph,
where every node in the giant component has at least a degree k. The phase transition phenomenon in k-core
percolation is typically characterized by the appearance and disappearance of a giant k-core component of
the order of the size of the original network. Researches have shown that k-core percolation undergoes a
mixed-order phase transition for k⩾ 3, characterized by an abrupt jump in the order parameter (giant
component) that resembles a first-order phase transition. However, it also exhibits scaling behaviors at and
near the critical threshold, as typically observed in second-order phase transitions [13, 16, 17]. Further,
considering k-core percolation for k⩾ 3 in random networks, studies have revealed several critical exponents
near the mixed-order phase transition threshold [18], containing the critical exponents βS = 1/2, γS = 1, etc
defined by

S(z)− Sc ∝ (z− zc)
βS , (1)

χS = N
(〈

S2
〉
−⟨S⟩2

)
∝ (z− zc)

−γS , (2)

where S(z) and Sc denote the fraction of the k-core giant component of a network with size N at mean degree
z and at critical mean degree zc, respectively; χS denotes the fluctuations of S; ⟨X⟩ represents the mean value
of X. These exponents yield insights into the nature of critical phenomena that occur near phase transitions
of the system, such as the scaling behavior near the critical transition.

In recent years, a model called interdependent networks (IN) has been developed and studied by
Buldyrev et al [19]. This model has gained increasing attention [20–24], due to the growing interdependence
between various systems in our modern world [25, 26]. The IN system is defined as two or more networks
where pairs of nodes in different networks depend for functioning on each other. Thus, the failure of a node
in one network triggers the failure of its dependent nodes in another network, as well as the failures of those
nodes that are connected to the network via the failed nodes. Note that dependency links may also exist
within a single network, yielding similar results [27, 28].

By studying IN, researchers can gain insights into the robustness and resilience of such interacting
macroscopic systems, as well as exploring the mechanisms that drive cascading failures and collapse
transition. In particular, studying the critical behavior of IN can help us in providing insights into the
mechanisms yielding the critical phenomena and help to design more resilient interdependent systems.
Noteworthy, research studies have shown that IN also undergo, like k-core [13, 14, 18], mixed-order phase
transition [21, 29–31]. Moreover, in percolation of IN, the critical exponents β and γ also have respectively
values equal to 1/2 and 1 like in k-core [13, 18, 32, 33], near the mixed-order phase transition
point [21, 29, 34].

Zhou et al [35] studied the dynamics of cascading failures in IN and found that the mean value of the
plateau time, τ (figure B3(a)), that is the number of iterations (time) until the system fully collapses at pc
scales as ⟨τc⟩ ∝ N1/3 and ⟨τc⟩ ∝ (pc − p)−1/2. Very recently, Gross et al [36] have identified in IN critical
characteristics of the order parameter fluctuations near the threshold of a mixed-order phase transition.
They find that the fluctuations of the order parameter exhibit a fractal fluctuation dimension, d ′

f , for length
scales up to the correlation length. This is analogous to continuous second-order transitions, where near
criticality the order parameter itself is a fractal. Moreover, Gross et al [36] found that for d-dimensional IN
spatial networks the hyperscaling relation between d ′

f , correlation length exponent ν ′ and β is valid, i.e.

d ′
f = d−β/ν ′, (3)

for any d. Note that these two new exponents (i.e. d ′
f and ν ′) also exist in interdependent random networks

[36], like Erdős-Rényi (ER) networks [37].
These two models, k-core and IN, have flourished in their respective fields. Lee et al [18] have identified

several shared behaviors and features between these two models. We claim here that in k-core percolation,
like in IN, nodes fail due to two types of interactions that have different length scales. A node can fail because
it does not belong to the giant component or because its degree is below k. In IN percolation, nodes are also
removed based on becoming isolated from their own network or due to their dependencies on failing nodes
in other networks or in the same network [27]. Thus, in both models, there exist two different types of
interactions. In addition, percolation in both models exhibits mixed-order phase transition, with the same
exponents β = 1/2 as well as the same scaling of the plateau times ⟨τc⟩ ∝ N1/3 [18, 29, 35] near criticality.
Lee et al [24] revealed that the universal mechanism for mixed-order phase transitions may be related to
long-range (LR) loops [24]. The two models indeed exhibit some similarities, but it remains unclear whether
the newly discovered exponents for correlation length and fractal fluctuations found for IN [36] also exist in
k-core percolation with the same values. Furthermore, the origin of the similarity in the phase transitions of
the two models is also unclear.

2



New J. Phys. 26 (2024) 013006 S Gao et al

Thus, in the present work, we explore these two questions, the similarity between the models and the
mechanisms behind, by investigating k-core percolation in ER random networks. Specifically, using the node
occupancy p as the controlled variable and the k-core giant component sizeM as the order parameter, we
examine, like in [36], the fluctuations of the critical threshold and of the order parameter, as a function of N
and p− pc. Interestingly, we find here that k-core percolation also exhibits a fractal fluctuation dimension
d̃f ≡ d ′

f /d= 3/4 for network sizes up to the correlation size N ′, where N ′ ∝ (p− pc)−ν̃ with ν̃ ≡ dν ′ = 2.

Note that ν̃ (d̃f) is obtained by the scaling of the fluctuations of critical threshold, pc (critical k-core giant
component size,Mc) with respect to the network size N. Table 1 summarizes the critical exponents of k-core
percolation and IN percolation in random networks. The identical critical exponents shared by both models,
as presented in table 1 provide strong support for the similarity between the k-core and IN models. It is very
plausible that the origin for the similarity between both systems (and probably in many other systems), lies
in the similar fundamental mechanisms of these models. Specifically, the presence of two types of
interactions: one is short range (SR) that is a node fail when becoming disconnected from the network and
the other is LR influence by having a degree below k (in k-core) or not being supported via a dependency link
(in IN). As shown below, the distribution of the distances caused by a failure in different k-core giant
components provides strong support for this hypothesis. Our study contributes to a deeper understanding of
the mechanisms of the k-core percolation, and also supports the generalization of the fractal fluctuations
phenomena as well as the diverging correlation length and their meaning in general mixed-order phase
transitions.

2. Possible origin for the similarity of phase transition between k-core model and IN

In this section, we will explore the critical behavior of k-core percolation in section 2.1 and of IN in
section 2.2, both for ER random networks of size N with a mean degree z. We will also further try to uncover
the origin of the similarity between both systems.

2.1. SR and LR interactions in k-core percolation
The k-core giant component is the maximal subgraph of the original graph, where every node in the k-core
giant component has at least a degree k, as shown in figure 1(a). To obtain the k-core giant component of the
original network, we first remove randomly a fraction of 1− p nodes from the original network. We now
iteratively remove nodes, where at each iteration all nodes with a degree below k are removed until there are
no such nodes. If a k-core giant component of the order of N nodes remains, we are above the transition pc
and if such a giant component does not exist, we are below pc.

To test the range of influence, we randomly remove a node from the k-core giant component, where the
giant component is obtained at node occupation rate p(k) , and p(k) is close and above the critical threshold
pc(k) such that∆p= p(k)− pc(k) = 0.05. This removal will cause some nodes in the k-core giant component
to have a degree below k, thereby triggering the removal of further nodes. This process will generate an
avalanche and we will test here, how far, that is how many layers, in the network are influenced by the
removed node. By analyzing this distribution, we expect to distinguish between SR and LR interactions. We
plot in figures 1(b) and (c) the probability density function (PDF) of the relative maximal distance affected
by the avalanche of the removed node in the k-core giant component. The relative distance of the initially
removed node is defined as the ratio between its propagation distance and its maximum potential
propagation distance, ranging from 0 to 1. The propagation distance of the initially removed node represents
the maximum shortest path between subsequently removed nodes and the initially removed node, while the
maximum possible propagation distance corresponds to the maximum shortest path between the nodes in
the k-core giant component and the initially removed node. Small ratios that decrease with network size
correspond to SR interactions and large ratios which do not change with network size, correspond to LR
interactions. Note that, for k-core percolation, SR interaction refers to node failures triggering localized or
limited-range cascading failures. The range is measured in shortest path distances. The ratios of relative
distance distribution (with respect to the diameter) of such cascading failures is found to decrease with the
network size. Conversely, LR interactions lead to cascading failures over long distances, and the ratios of
relative distance distribution of these cascading failures are found unchanged with varying network sizes. In
IN (as we show later), SR dependencies make it unlikely for node failures to propagate globally, while LR
dependencies result in the propagation of failures over network scale distances. Note that, interaction
between nodes is also a focus in higher-order network [38, 39]. We can clearly see in figures 1(b) and (c) that
for k= 1 and k= 2, the process features SR interactions. However, for k⩾ 3, all lines collapse together and
behave as LR interactions. Moreover, the linearity in the log-linear plot suggests that the distribution follows
an exponential distribution P(ℓ)∼ e−λℓ of distances ℓ. The slopes λ reveal that the decay for small k (k= 1
and k= 2) is faster than that of larger k (k⩾ 3). Note that, the decay for k= 1 is also faster than that of k= 2.
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Figure 1. Results for k-core percolation. (a) Demonstration of the k-core giant component. The subgraphs surrounded by circles
of different colors represent distinct cores. (b) probability density function (PDF) of the relative distance of failures caused by the
removal of single nodes in the k-core giant component. The k-core giant component is obtained from the original ER
network of network size N= 105 and mean degree z= 10 at node occupied fraction p near critical threshold pc, satisfying
∆p= p− pc = 0.05. (c) Similar to (b) for the case N= 106. We can clearly see in (b) and (c) for k= 1 and k= 2, only
short-range (SR) interactions exist. This is since in these cases, the slope increases when N increases. However, for k ⩾ 3, the slope
remains the same, meaning that long-range (LR) interactions exist. (d) The fraction of k-core giant component, S , as a function
of the occupied fraction p of nodes for different k in ER network of size N= 105 and mean degree z= 10. (e) Number of
iterations (NOI) to reach the steady state for different p. The critical threshold of the abrupt first order phase transition can be
identified by the p at which NOI reaches maximum (as found for IN [40]). (f) The scaling law S(p)− S(pc)∝ (p− pc)β exists
near the threshold pc for different k. We have continuous transitions with β= 1 for k= 1 (SR interactions), and β= 2 for k= 2
(SR interactions, but a slightly longer than k= 1) and β = 1/2 for k ⩾ 3 (LR interactions), as found also in [13, 18]. Here we use
a single realization of ER network of size N= 106 and mean degree z= 10.

Importantly, note that the slopes λ for larger k (k⩾ 3) do not change with network size and thus supporting
the hypothesis that the effect is LR. In contrast, for k= 1 and k= 2, the slopes increase (relative distances
become smaller) with network size, suggesting they are of SR nature. As we will see later, in both systems
k-core and IN, SR interactions yield a second order phase transition while LR interactions yield a
mixed-order phase transition.

We also plot in figure 1(d) the fraction of the k-core giant component, S, in the k-core model with respect
to the original network of mean degree z and size N, as a function of node occupation probability, p, for
several values of k. Two distinct types of phase transitions can be observed. A second-order continuous phase
transition can be seen for k= 1 and k= 2; and an abrupt transition is seen for k⩾ 3, in agreement with
earlier results [13]. For each curve in figure 1(d) except for k= 1, we can identify the critical threshold pc by
identifying the p-value of the maximum number of iterations (NOI). This is since we expect that NOI
diverges at pc when N approaches infinite. Indeed, the values of pc are in agreement with the theoretical
values [13]. Note that this method of identifying pc in k-core percolation is the same as that of identifying pc
in interdependent networks [40]. This method can help to identify pc for systems such as spatial networks
where a theory for pc does not exist. Moreover, as shown in figure 1(f), for the k-core model, near the critical
threshold, the scaling law S(p)− S(pc)∝ (p− pc)β exists, where β= 1 holds for k= 1 (like in regular
percolation, corresponds to SR interactions); β = 2 holds for k= 2 (corresponds to SR interactions, figures
1(b) and (c), but somewhat longer than k= 1); and β = 1/2 holds for all k⩾ 3 (see earlier results [13, 18]).
Later we will show that very similar results also appear in IN.

2.2. SR and LR interactions in IN percolation
In this subsection, we consider IN where the dependency links are in the same network. As shown in
figure 2(a), the single-layer network model incorporates both connectivity links (solid black lines) and
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Figure 2. Results for percolation for the connectivity-dependency (CD) model. (a) Demonstration of the CD model, i.e. a
single-layer network model that incorporates both connectivity links (solid black lines) and dependency links (dashed red lines),
where the dependency links are subjected to a maximal shortest path length (ℓ) constraint. Small values of ℓ correspond to SR
interactions, while large values of ℓ correspond to LR interactions. When ℓ ⩾ D, where D is the network diameter (in this case,
D∼= 4), the pairs of dependent nodes are chosen randomly. (b) The fraction of the giant component, S, as a function of the
random occupied fraction p of nodes for different dependency length ℓ for ER random network of size N= 105 and mean degree
z= 10. (c) Number of iterations (NOI) to reach the steady state for different p. The critical threshold of abrupt first order phase
transition can be identified by the p at which NOI reaches maximum (as found for k-core (figure 1(e)) and for IN [40]). (d) The
scaling law S(p)− S(pc)∝ (p− pc)β also exists near the threshold pc for different distance ℓ. We have β= 1 for ℓ= 0 (SR), and
β= 2 for ℓ= 1 (SR) and β = 1/2 [21, 41] for ℓ= 4,9 (LR). Note that for ℓ= D, Parshani et al [27] derived an analytical formula
(see equation (A.1)), from which we can analytically derive the critical exponent β = 1/2 (see appendix A for more details),
supporting our results here. Note that for obtaining figure 2(d) we averaged over 100 realizations of ER network of size N= 105

and mean degree z= 10.

dependency links (dashed red lines), where the dependency links are subject to a maximal shortest path
length (ℓ) constraint. For simplicity, we denote this model as the connectivity-dependency (CD) model. Each
node i has one and only one dependency node j, with the constraint that the distance between the node i and
its dependency node j is at most ℓ. Small values of ℓ correspond to SR interactions, while large values of ℓ of
the order of the system diameter, correspond to LR interactions. When ℓ= 0, the single-layer network does
not have dependency links, like regular percolation, and therefore pc = 1/z, see figure 2(b). When ℓ⩾ D,
where D is the network diameter (in figure 2(a) case, D∼= 4), the pairs of dependent nodes are actually
chosen randomly, like in the model of IN [19] or of a single network [28]. Note that the dependency links
here are bidirectional, i.e. if a node i fails, it will cause the dependent node j to also fail, and vice versa.

Now we simulate the percolation process on the CD model. First, we construct the CD model upon an
ER random network of size N with a mean degree z. In the first step, we randomly remove a fraction of 1− p
of the nodes from the CD model. We remove the nodes iteratively while applying two processes. One is the
percolation process: the failed nodes and their connectivity links are removed, causing other nodes to
become disconnected from the network and fail. The other is the dependency process: the failed nodes
trigger the failure of their dependent nodes, although these dependent nodes are still connected to the
network via connectivity links. The iteration terminates when no such nodes are left. Similar to the k-core
percolation, if a giant component of the order of N nodes remains, we are above the transition pc and if such
a giant component does not exist, we are below pc.

Figure 2(b) depicts the fraction of the giant component, S, in the CD model with respect to the original
network with mean degree z and size N, as a function of node occupation probability, p, for several values of
ℓ. Like in k-core percolation (see figure 1(d)), two distinct types of phase transition can be observed. A
second-order continuous phase transition is observed in figure 2(b) for ℓ= 0 and ℓ= 1, while an abrupt
phase transition is observed for ℓ= 4,9. Notably, for ℓ= D∼= 9, the results align with the findings in [27].
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Table 1. Summary of critical exponents of k-core percolation and interdependent networks (IN) percolation of ER network.

Scaling Exponent k-core (k⩾ 3) Interdependent networks (ℓ= D)a

S(p)− Sc ∝ (p− pc)
β β 1

2 [13, 18, 32, 33]
1
2 [21, 41]

χ ∝ (p− pc)
−γ γ 1 [18] 1 [29, 34]

Sc(N)− Sc(∞)∝ N− β
ν̄
a ν̄ 2 [18, 32] 2 [29]

N ′ ∝ (p− pc)
−ν̃ ν̃ 2 (equation (5)) 2 [36]

σ(Mc)∝ Nd̃f d̃f
3
4 (equation (8)) 3

4 [36]

σ(M)∝ (p− pc)
−ϵ ε 1

2 (equation (16)) 1
2 [36]

⟨τc⟩ ∝ Nψ ψ 1
3 ([18], equation (B.1)) 1

3 [29, 35]

⟨τ⟩ ∝ (p− pc)
−ϕ ϕ 1

2 (equation (B.6)) 1
2 [35]

a Sc(N) denotes the fraction of the k-core giant component out of the original network of size N at pc and Sc(∞) is for N→∞.

For each curve in figure 2(c) except for ℓ= 0,1, we can identify the critical threshold pc by determining the
p-value at the maximum number of iterations (NOI), like in the k-core model (see figure 1(e)) and like in the
IN model [40]. Moreover, as shown in figure 2(d), near the critical threshold, the scaling law
S(p)− S(pc)∝ (p− pc)β exists, where β= 1 holds for ℓ= 0 (the limit of regular percolation); β = 2 is found
for ℓ= 1; and β = 1/2 holds for ℓ= 4,9.

Thus, we hypothesize that in both models, k-core and IN, the mechanisms behind the different phase
transitions and therefore the outcome seem to be the same. In k-core percolation, the distribution of relative
interaction distances indicates that: k= 1 and k= 2 correspond to SR interactions, while k⩾ 3 corresponds
to LR interactions (see figures 1(b) and (c)). Similarly, in the proposed CD model, we impose a restriction on
the interaction distance ℓ of dependency links, where ℓ= 0 and ℓ= 1 represent SR interactions, and ℓ= 4,9
represents LR interactions. The behavior of the two models is similar for both the SR case, as well as LR case.
Specifically, the comparison between figures 1(f) and 2(d) indicates that: β= 1 holds for both the CD model
percolation (ℓ= 0) and the k-core percolation (k= 1), corresponds to SR interactions; β= 2 is found for
both the CD model percolation (ℓ= 1) and the k-core percolation (k= 2), also associated with SR
interactions, but with slightly longer interactions compared to β= 1. Furthermore, β = 1/2 is found for
both the CD model percolation (ℓ= 4,9) and the k-core percolation (k⩾ 3), which corresponds to LR
interactions. The high consistency between the results and the critical exponents of the two models provides
strong support for their similar fundamental mechanisms. Specifically, the similar behaviors observed in
both models further support the hypothesis that both SR and LR influences are the origin of their similarity.

In the following sections, we aim to identify several new critical exponents of k-core giant component to
further support the mechanisms behind the similarity between the two models. For a summary of all known
exponents and all new exponents found here, see table 1.

3. Fractal fluctuations dimension and correlation size of k-core percolation

In this section, we study the critical exponents of the relation between the fluctuations of pc and sizeN, which
also represents how the correlation size scales with p− pc. We further study how the fluctuations ofM scale
with N and p− pc, i.e. what is the fractal fluctuations dimension.

3.1. Critical exponent of fluctuations of the critical threshold: correlation size
For a given network of size N we study in figure 3(a) the fluctuations of pc, σ(pc), for different realizations
scale as a function of N. The results suggest the following scaling with N,

σ (pc)∝ N−1/ν̃ , ν̃ = 2. (4)

Thus, equation (4) suggests that

N ′ ∝ (p− pc)
−2

, (5)

is the correlation size below which (for N< N ′) the critical features exist and could be observed while above
N ′ the critical regime disappears (see figure 4). Note that for lattices σ(pc) is measured as a function of L, the
size of the lattice [36], i.e. σ(pc)∝ L−1/ν ′

, suggesting correlation length ξ ′ ∝ (p− pc)−ν ′
. Here, in ER a

linear length L does not exist, therefore we measure the fluctuations as a function of N, satisfying N= Ld,
where d is the dimension of the spatial network. Thus, ν̃ can be regarded as a correlation size exponent, in
analogy to the correlation length exponent ν ′ in d-dimensional spatial network, satisfying:

ν̃ ≡ d · ν ′. (6)

6



New J. Phys. 26 (2024) 013006 S Gao et al

Figure 3. The correlation size exponent of k-core percolation in ER network. (a) The scaling relation between the standard
deviation of the k-core percolation threshold, pc, and network size N. It exhibits the same scaling relation as found for IN [36]. (b)
The distribution of pc follows the scaling relation of equation (7). Here we simulated 104 realizations for N ⩽ 3 · 105 and 200
realizations for N= 106. Note that, we consider k= 5 as an example for the distribution shown here, but the same holds true for
other values of k ⩾ 3. We have included the results for k= 3 in the appendix, which can be seen in figure B1(a).

In this study, we utilize finite-size scaling to measure it by following a similar approach given in [42–44].
The distribution of pc for different realizations with respect to mean ⟨pc⟩ for different N values is shown

to behave in figure 3(b) as a scaling function,

P(pc)N
−1/ν̃ ∼ F

[
(pc −⟨pc⟩)/N−1/ν̃

]
, (7)

where F(x) can be well approximated by a Gaussian distribution. Here, all distribution curves collapse into a
single curve by rescaling with the correlation size exponent ν̃. Note that the obtained exponent ν̃ as well as
the scaling in equation (4) for k-core is the same as those found in the IN [36].

3.2. Fractal fluctuations dimension of the k-core giant component
For a given N we study in figure 4(a) the fluctuations of the k-core giant componentM, σ(M), at and near
the threshold pc based on different realizations, and then plot it as a function of N. The results at criticality
suggest the following scaling with N,

σ (Mc)∝ Nd̃f , d̃f = 3/4. (8)

Here d̃f is the fractal fluctuations dimension of the k-core giant component in random networks with respect
to the size N. While in d-dimensional lattices, σ(Mc) is measured as a function of L, i.e. σ(Mc)∝ Ld

′
f [36].

Since N= Ld, we have

d̃f ≡ d ′
f /d. (9)

Further, similar to the previous section, by rescaling with the fractal fluctuations dimension, d̃f, we collapse
in figure 4(b), the distribution ofMc for different N according to the scaling,

P(Mc)N
3/4 ∼ F

[
(Mc −⟨Mc⟩)/N3/4

]
. (10)

While equation (8) is valid at the critical threshold, away from the critical threshold and above the
correlation size, we can see the normal scaling, i.e.

σ (M)∼ N1/2. (11)

Close to the critical threshold, a crossover between these two behaviors is observed, which can be described
using a scaling function f(µ) as

σ (M)∝ N3/4f(µ) , (12)

7
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Figure 4. Fractal fluctuations dimension of the critical massMc of k-core percolation in ER network near pc. (a) Scaling relation
between the fluctuations ofM and the network size N at and near the critical threshold pc. Here we choose∆p= p− pc shown

up to down being {0.003,0.01,0.015,0.03}. The crossover in the slope represented by the exponent d̃f is clearly seen. That is,

within a correlation size, N′ (equation (5)), fractality can be observed with d̃f = 3/4 while above the correlation size, there is no
fractality and equation (11) appears. (b) The distribution ofMc follows the scaling relation in equation (10). (c) Scaling relation
between the fluctuations ofM and p− pc. Note that, the scaling relation between the fluctuations of S and p− pc (see
equation (2)) has been also investigated in [18]. σ(M)∝ (p− pc)−1/2 can be derived from equation (2), further supporting our
findings here. (d) Fractal fluctuations behavior in the variation of the massM near the critical mixed-order percolation threshold,
supporting equation (16). Our results for k-core follow the same scaling function, crossover and critical exponents found in
interdependent networks [36]. Note that, an analogous crossover has been also observed in [18], further supporting our fractality
findings here. We considered here k= 5 as an example, but the same holds true for other values of k ⩾ 3 as can be seen in the
appendix in figures B1(b) and B2.

with

µ= (p− pc)
α ·N, (13)

where f(µ) is a piecewise function satisfying f(µ)∝ constant for µ< 1 and f(µ)∝ µm = (p− pc)αm ·Nm for
µ> 1. Thus, we have:

σ (M)∝

{
N3/4 forµ < 1

N3/4+m (p− pc)
αm forµ > 1.

(14)

In figure 4(a) we can see that σ(M)∝ N1/2 for µ> 1, implying 3/4+m= 1/2, i.e.m=−1/4. Thus, we
have:

σ (M)∝

{
N3/4 forµ < 1

N1/2 (p− pc)
−α/4 forµ > 1.

(15)

In order to determine the value of α, we plot σ(M) against p− pc in figure 4(c). We obtain σ(M)∝
(p− pc)−1/2, implying that α= 2. Finally, to support equation (12) and the obtained value of α, we created a

8
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scaled plot shown in figure 4(d), depicting σ(M)/
(
N1/2(∆p)−1/2

)
against N(∆p)2. As can be seen, we

achieve a satisfactory scaling collapse with α= 2, i.e. we have:

σ (M)∝

{
N3/4 forN< N ′ ∝ (p− pc)

2

N1/2 (p− pc)
−1/2 forN> N ′.

(16)

Thus, k-core features again the same universal scaling function as that of interdependent network [36].

4. Hyper-scaling relation for fluctuations in mixed-order transition

In this section, we establish analytical arguments for a universal hyper-scaling relation for the fractal
fluctuations dimension of the order parameter in a mixed-order transition in spatial networks of size,
N= Ld, which also provides insight for non-spatial random networks.

We start with the scaling of the fraction of k-core giant component, S, close to criticality for both
second-order and mixed-order transitions,

S(p)− Sc ∝ (p− pc)
β
. (17)

Here, for second order transition Sc = 0 while for mixed order Sc is finite. Next, we substitute the size
(number of sites) of the giant component,Mc, at pc andM(p) away (but closeby) from the critical threshold

M(p)

Ld
− Mc

Ld
∝ (p− pc)

β
. (18)

Based on the general case, equation (18), one can obtain the well-known hyperscaling relation for
continuous second-order transitions [42, 44]. SubstitutingMc = 0 andM(p)∝ Ldf into equation (18), yield
Ldf/Ld ∝ (p− pc)β and since ξ ∝ (p− pc)−ν , the hyperscaling relation

df = d−β/ν, (19)

is derived.
Different from the continuous phase transition case, in the mixed-order phase transition case, for

equation (18), we evaluate instead the standard deviation of both sides

σ

(
M(p)

Ld
− Mc

Ld

)
∝ σ

(
(p− pc)

β
)
. (20)

Using the known relation σ(Xa)∼ Xa−1σ(X) [45] and assuming that the dominant variations between
different realizations are in pc andMc, we get

σ (Mc)

Ld
∝ (p− pc)

β−1
σ (pc) . (21)

Assuming, σ (Mc)∝ Ld
′
f , for L< ξ ′, we get

Ld
′
f

Ld
∝ (p− pc)

β−1
σ (pc) . (22)

Substituting into equation (22) the scalings ξ ′ ∝ (p− pc)−ν ′
and σ(pc)∝ L−1/ν ′

, we obtain,

Ld
′
f −d = ξ ′− β−1

ν ′ L−
1

ν ′ . (23)

Taking the limit L→ ξ ′, we obtain,

ξ ′d ′
f−d = ξ ′− β

ν ′ . (24)

Thus, deriving the new but analogous to equation (19) hyperscaling relation, equation (3), for the fractal
fluctuations dimension, d ′

f = d−β/ν ′.
Note that the hyperscaling relations given by equation (3) (for mixed-order phase transitions) and

equation (19) (for second-order phase transitions) are similar, but the interpretation of the fractal
dimensions d ′

f and df are different. For second-order continuous phase transitions, df describes the fractal
dimension of the bulk [42, 44], while for mixed-order phase transitions, d ′

f describes the fractal dimension of
the fluctuations ofMc, i.e. how σ(Mc), scales with L. Below the correlation length the fluctuations are fractals,

9
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but above they behave normally. Note that the hyperscaling relation, equation (3) holds for spatial networks
of different dimension d. Correspondingly, it also holds for random networks like the ER networks.
Substituting equations (6) and (9) into equation (3), we can obtain the hyperscaling relation for random
networks,

d̃f = 1−β/ν̃. (25)

As expected, the evaluated critical exponents β = 1/2, ν̃ = 2 and d̃f = 3/4 found here satisfy this
hyperscaling relation, equation (25). Noteworthy, the hyperscaling relation equation (3) with identical
exponents as found here for k-core, is also valid for IN [36].

5. Discussions and summary

In the present study, we investigate systematically the k-core percolation phase transitions in ER random
networks to uncover the similarities of percolation in the k-core and IN models, along with identifying the
possible underlying mechanisms for the similarities. We examine several new critical exponents found
recently in IN [36], such as the critical exponents of fluctuations of pc, representing the diverging correlation
size, N ′, and of the order parameters in different realizations of size, N, representing the fluctuation fractal
dimension. The findings are summarized in table 1, where the common critical exponents of k-core
percolation and IN reveal intriguing similarities between the two models.

Our results suggest that the similarity of the criticality between the two systems (and probably to many
other systems) originates from the two types of interactions that exist in both systems, one is the connectivity
links which are SR and the other is the k-core (k⩾ 3) or the dependency (large ℓ) which are both LR. When
plotting the distributions of distances caused by a failure in different cores, we found that for k⩾ 3 the
interactions are LR, while for k= 1 and k= 2 the interactions are SR (see figure 1). Similar to k-core
percolation, percolation results of the CD model again show that SR interactions exist for ℓ= 0 and ℓ= 1
and thus yield a second order phase transition, while LR interactions, e.g. ℓ= D yields a mixed order phase
transition. In both models (and potentially also for other models) the mechanisms behind the different
phase transitions seem the same, and SR and LR influences are the origin. Moreover, we demonstrate that the
fractal fluctuations dimension of the order parameter in the mixed-order phase transition satisfies the
hyperscaling relation, d ′

f = d−β/ν ′.
Our study offers valuable insights into the striking similarities between k-core percolation and

percolation in IN, shedding light on the phenomenon of fractal fluctuations dimension observed in
mixed-order phase transitions. The investigation into the original mechanism of these similarities enhances
our understanding of the intricate behaviors near the phase transition point, contributing to the
establishment of a more rigorous and universally applicable theoretical foundation. These findings are poised
to extend the interdisciplinary applications of both models, paving the way for a deeper understanding of
breakdown of complex systems. They hold the potential to improve the resilience of real-world systems, such
as communication networks, transportation networks, and energy networks. Furthermore, the insights
gained have implications for engineering and technology fields, offering nuanced understanding for
endeavors like materials design and manufacturing processes.
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Appendix A. Critical exponent β in CDmodel for ℓ = D

Here we consider the single-layer network model that incorporates both connectivity links and dependency
links, where the dependency links are subject to a maximal shortest path length constraint ℓ called here the
CD model, see figure 2(a). When ℓ= D, where D is the network diameter, dependency pairs are randomly
selected. Parshani et al [27] derived the formula:

S(p) = p2 (1− exp(−zS(p)))2 . (A.1)

suggesting:

exp(−zS) = 1− S1/2/p. (A.2)

Here for simplicity, we denote S(p) as S. To analytically find the critical exponent β, we define:

f(p,S) = S− p2 (1− exp(−zS))2 . (A.3)

Letting f(p,S) = 0, equation (A.1) can be obtained. To find the critical exponent β near the critical point
(pc, Sc), we can expand f(p,S) near p= pc and S= Sc:

f(p,S) = f(pc,Sc)+ f ′S (pc,Sc)(S− Sc)+ f ′p (pc,Sc)(p− pc)+
f ′ ′SS (pc,Sc)

2!
(S− Sc)

2

+
f ′ ′pp (pc,Sc)

2!
(p− pc)

2
+

f ′ ′Sp (pc,Sc)+ f ′ ′pS (pc,Sc)

2!
(S− Sc)(p− pc)+ . . .= 0. (A.4)

Here, f ′S and f
′
p denotes the partial derivatives of f with respect to S and p; f ′ ′SS and f

′ ′
pp denotes the second order

partial derivatives of f with respect to S and p; f ′ ′Sp and f ′ ′pS denotes the second mixed partial derivatives of f. At
the critical point (pc, Sc), calculating f ′S, f

′
p and f ′ ′SS and substituting into equation (A.2), we obtain

f ′S (pc,Sc) = 2zSc − 2zpcS
1/2
c + 1= 0 (A.5)

f ′p (pc,Sc) =−2Sc/pc ̸= 0 (A.6)

f ′ ′SS (pc,Sc) =−zpcS
−1/2
c + 2z ̸= 0. (A.7)

Here, f ′S(pc,Sc) = 0 is the condition for the first-order abrupt phase transition [27], and we know that
equation (A.1) yields first-order abrupt phase transition. f ′p(pc,Sc) ̸= 0 is because Sc ̸= 0. f ′ ′SS(pc,Sc) ̸= 0 holds,
since if it is not true, it will lead to a contradiction with equation (A.5). Then rearranging equation (A.4)
yields

(S− Sc)
2
=−2

f ′p (pc,Sc)

f ′ ′SS (pc,Sc)
(p− pc)− 2

f ′ ′Sp (pc,Sc)+ f ′ ′pS (pc,Sc)

f ′ ′SS (pc,Sc)
(S− Sc)(p− pc)+ . . . (A.8)

Here, since the first term in equation (A.8) is the leading term, we derive the scaling relation
S− Sc ∝ (p− pc)1/2, i.e. β = 1/2, supporting figure 2(d).

Appendix B. Critical exponent in k-core percolation

B.1. The collapsed PDF in k-core percolation
Here for k= 3 core percolation in ER network, we collapse the PDF of critical threshold pc (critical massMc)
together utilizing the same scaling relationship given in equation (7) (equation (10)), as shown in figure B1.

B.2. Fractal fluctuations of the k-core giant component
For k= 3 core percolation in ER network, the scaling behavior of fluctuation of k-core giant component at
and near threshold is plotted in figure B2, which shows the same critical behavior as for k= 5 shown in
figure 3, section 3.2. Note that it is the same scaling function found for percolation of IN with the same
exponents [36].
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Figure B1. The collapsed Probability Density Function (PDF). (a) The distribution of pc follows the scaling relation in
equation (7). (b) The distribution ofMc follows the scaling relation in equation (10). It exhibits the same scaling relation as in
interdependent networks [36].

Figure B2. Critical exponents of fluctuations of the critical massMc of k-core percolation in ER network near pc. (a) Scaling
relation between the fluctuations ofM and the network size N at and near the critical threshold pc. Here we choose∆p= p− pc
from up to down to be {0.01,0.015,0.03,0.05}. The crossover in the exponent d̃f is clearly seen. (b) Scaling relation between the
fluctuations ofM and p− pc. (c) Fractal fluctuation behavior in the standard deviation of the massM near the critical
mixed-order percolation threshold, supporting equation (16). It follows the same scaling function, crossover and critical
exponents as found in interdependent networks [36].

B.3. Scaling behaviors of mean plateau time in k-core percolation
For a given N we study in figure B3(a) the NOI which we call the mean plateau time ⟨τ⟩ at and near the
threshold pc for different realizations, and then plot it in figure B3(b) as a function of N. The results suggest
the following scaling with N,

⟨τc⟩ ∝ N1/3, (B.1)

in agreement with Lee et al [18]. While equation (B.1) is valid at the critical pc, away from the critical regime
the mean plateau time is observed in figure B3(b) independent of N, i.e. as∼ N0. Close to the critical
threshold, a crossover between these two behaviors is observed and can be described via a scaling function
f1(µ1) as

⟨τ⟩ ∝ N1/3f1 (µ1) , (B.2)

with

µ1 = (pc − p)α1 ·N. (B.3)

Here, f1(µ1) is a piecewise function satisfying f1(µ1)∝ constant for µ1 < 1 and
f1(µ1)∝ µm1 = (pc − p)α1m1 ·Nm1 for µ1 > 1. Thus, we have:

⟨τ⟩ ∝

{
N1/3 forµ1 < 1

N1/3+m1 (pc − p)α1m1 forµ1 > 1.
(B.4)
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Figure B3. The plateau of single realizations. (a) Dynamical process, i.e. the plateau behavior of the fraction of k-core giant
component, S, of a network with mean degree z and size N with NOI (time) of k-core giant component at criticality, pc and just
below pc. (b) Scaling relations between the mean plateau time (number of iterations-τ ) and the network size N at critical pc and
at four non-critical p values just below pc. Note that, the relation ⟨τc⟩ ∝ N1/3 was also found in [18], supporting the findings
here. (c) Scaling relations of the mean plateau time, ⟨τ⟩, against pc − p for different N. (d) The scaling collapse of (b) and (c),
supports equation (B.5). It is seen that the scaling behavior of the mean plateau time and their critical exponents for k-core are
identical to those of interdependent networks [35].

From figure B3(b) we can see that ⟨τc⟩ ∝ constant for µ> 1, implying 1/3+m1 = 0, i.e.m1 =−1/3. Thus,
we have:

⟨τ⟩ ∝

{
N1/3 forµ1 < 1

(pc − p)−α1/3 forµ1 > 1.
(B.5)

In order to determine the value of α1, we plot ⟨τc⟩ against pc − p in figure B3(c). We can see that
⟨τc⟩ ∝ (pc − p)−1/2, implying α1 = 3/2. Finally, to support equation (B.2) and the obtained value of α1, we
created a scaled plot shown in figure 4(d), depicting ⟨τc⟩/N1/3 against N2/3∆p. As can be seen, one achieves
a satisfactory scaling collapse with α1 = 3/2, i.e. we have:

⟨τ⟩ ∝

{
N1/3 forN< N ′

1 ∝ (pc − p)−3/2

(pc − p)−1/2 forN> N ′
1.

, (B.6)

showing further that the scaling behavior of the mean plateau time and its critical exponents in k-core are
identical to those of IN [35].

ORCID iDs

Shengling Gao https://orcid.org/0009-0004-0660-3918
Leyang Xue https://orcid.org/0000-0001-9304-7438
Bnaya Gross https://orcid.org/0000-0003-1451-0290
Zhikun She https://orcid.org/0000-0003-2762-8730
Shlomo Havlin https://orcid.org/0000-0002-9974-5920

13

https://orcid.org/0009-0004-0660-3918
https://orcid.org/0009-0004-0660-3918
https://orcid.org/0000-0001-9304-7438
https://orcid.org/0000-0001-9304-7438
https://orcid.org/0000-0003-1451-0290
https://orcid.org/0000-0003-1451-0290
https://orcid.org/0000-0003-2762-8730
https://orcid.org/0000-0003-2762-8730
https://orcid.org/0000-0002-9974-5920
https://orcid.org/0000-0002-9974-5920


New J. Phys. 26 (2024) 013006 S Gao et al

References
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