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Abstract – The coronavirus known as COVID-19 has spread worldwide since December 2019.
Without any vaccination or medicine, the means of controlling it are limited to quarantine and
social distancing. Here we study the spatio-temporal propagation of the first wave of the COVID-
19 virus in China and compare it to other global locations. We provide a comprehensive picture of
the spatial propagation from Hubei to other provinces in China in terms of distance, population
size, and human mobility and their scaling relations. Since strict quarantine has been usually
applied between cities, more insight into the temporal evolution of the disease can be obtained
by analyzing the epidemic within cities, especially the time evolution of the infection, death, and
recovery rates which affected by policies. We compare the infection rate in different cities in
China and provinces in Italy and find that the disease spread is characterized by a two-stages
process. In early times, of the order of few days, the infection rate is close to a constant probably
due to the lack of means to detect infected individuals before infection symptoms are observed.
Then at later times it decays approximately exponentially due to quarantines. This exponential
decay allows us to define a characteristic time of controlling the disease which we found to be
approximately 20 days for most cities in China in marked contrast to different provinces in Italy
which are characterized with much longer controlling time indicating less efficient controlling
policies. Moreover, we study the time evolution of the death and recovery rates which we found
to show similar behavior as the infection rate and reflect the health system situation which could
be overloaded.

Copyright c© 2020 EPLA

Introduction. – Since December 2019 the world is
fiercely struggling against an epidemics of a novel Coro-
navirus named COVID-19 identified in Wuhan, a city of
11 million people in Hubei province, China. A medical
cure from the disease is yet unavailable and the number of
infected cases is increasing. As of April 1 2020, the virus
has already spread to more than 100 countries around the
world with more than 1 million confirmed cases.

(a)E-mail: bnaya.gross@gmail.com

In the absence of both medicine and vaccination, strate-
gies of their effective distribution are not considered yet
and the options to stop the propagation of the disease
are currently limited to quarantine of the infected indi-
viduals [1] and social distancing [2] in order to cut the
infection channels. Statistical estimations of the incubat-
ing (latency) period of the virus which includes no illness
symptoms vary between different populations and found to
be of about 4–7days [3] on average, while a long incubation
period of 19 days has also been observed [4]. The 14 days
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Fig. 1: General view of the COVID-19 propagation as of
April 1, 2020. (a) The number of confirmed infected cases
I(t) in mainland China and other locations around the globe
on a semi-log scale. In less than two months since COVID-19
inception, the number of infected individuals in China almost
reaches saturation while the number in other locations have
been rapidly increasing. (b) The slope (derivative) of log(I(t)).
The COVID-19 propagation decays rapidly in most cities in
China and the disease is almost stabilized with the derivative
approaching zero. In contrast, propagation in cities in other
locations around the globe have been still in their early stage
and the disease was still spreading as can be seen by the almost
constant or even increasing derivative. (c) The number of con-
firmed infected cases I(t) in different locations in China and
Italy since the first infection. While in most cities in China the
disease stabilized after a short time of approximately 20 days
on average, the disease in Italy has been still spreading and ap-
proached stability much later, see (d). The slope (derivative)
of log(I(t)) in different locations in China and Italy since the
first infection can be seen.

quarantine period, which has been adopted by many coun-
tries, is a result of the high limit of the 95% confidence
levels [5] of this incubating period. Under this quarantine
strategy, the virus spreading could be alleviated.

The first wave of COVID-19 in China was controlled
much faster compared to other locations in the world. Al-
though China was the country with most infection cases
up to the middle of March 2020 (fig. 1(a)), it was able
to stop the spreading while in other countries the disease
kept propagating close to exponentially as can be seen in
fig. 1(b). In fact, in most cities in China the spreading
stopped approximately after 20 days as shown in fig. 1(c).
In contrast, in other locations it got controlled very slowly
as shown, e.g., for Italy in fig. 1(d). This suggests that
one can learn from the disease decay in China and ap-
ply appropriate measures in other locations in the world.
While a general estimation of the disease evolution has
been recently conducted [6,7], a comprehensive analysis

of its spatio-temporal propagation which is important
for epidemic forecast and modelling [8–11], is still miss-
ing. In this paper, we study some aspects of the spatio-
temporal propagation of the first wave of the COVID-19
virus and discuss the differences between China and other
countries. A similar spatio-temporal approach is widely
used and successfully provides important insight into
many large-scale events [12–14]. The code and
data source are available at https://github.com/
lindsaymorgan/2019-nCovid-China-Data.

We study the spatial dynamics of the COVID-19 orig-
inated from Hubei and find scaling (power) laws for the
number of infected individuals in different provinces as
a function of the province population, the distance from
Hubei and their relation to the population migration from
Hubei. The human mobility [15–17] which has been sug-
gested to follow a Lévy-flight pattern [18–20] is signifi-
cantly important for modelling the spatial propagation
of the disease. A reasonable explanation for the corre-
lation between the population migration and the disease
spread can be the strict quarantines applied in most cities
in China after the shutdown of Wuhan traffic [21–23].
These quarantines were effective and probably prevented
infected individuals from further spreading the disease to
other cities. Hence, the number of infected individuals is
highly correlated to the population migration from Hubei
before the shutdown, fig. 2.

Quarantine has been usually applied strictly between
cities and the mobility within cities was less restricted.
Thus, more insight can be obtained by analyzing the epi-
demic within cities, while studying the disease decay on a
country scale might lead to uncertain conclusion regard-
ing the disease situation since the disease may propagate
in one city and decay in another. Our results suggest that
the temporal propagation of the disease in most cities in
China is similar. In fact, many cities in China experi-
enced a two-stages process of the disease. In early times
(of the order of few days), the disease was undetectable
due to the incubating period while spreading within the
city. Another possibility is that it takes a few days for the
city to become prepared for the disease. In later times,
the infected individuals have been quarantined and the
disease started to decay approximately exponentially in
many cities. The quarantines have been effective to ex-
tinct the disease inside a city and reach a stable state
with infection rates close to zero. Since quarantines were
applied almost at the same time in most cities in China,
we find that the decay stage of the disease starts almost
at the same time for most of the cities no matter if they
are large central cities, small cities or even Hubei province
cities. For this reason most of the cities experience a sim-
ilar 10–30days characteristic time of the disease drastic
reduction. In addition, most cities in China show similar
exponential growth of the recovery rate which can reflect
the similarity of the health system efficiency. This is in
marked contrast to Italy which did not show an exponen-
tial growth probably due to the overloaded health system
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Fig. 2: Spatial propagation analysis of the COVID-19 in China. (a) The number of infected individuals I (as of March 1,
2020) as a function of the distance from Hubei. The scaling follows eq. (2) with α = −1.87 ± 0.23. (b) The number of infected
individuals I as a function of the city population, m. The scaling follows eq. (3) with β = 1.18 ± 0.20. (c) The scaling of
I with the distance-population ratio r/m follows eq. (5) with γ = −0.84 ± 0.09. The exponents within the error bars follow
eq. (6). (d) The scaling of infected individuals with the population migration from Hubei. Almost linear scaling is observed
with φ = 0.96 ± 0.25 strongly relating the disease propagation to human mobility. The scaling of population migration with
the distance (e), population (f) and distance-population ratio (g) follow eq. (8) with α̃ = −1.37 ± 0.11, β̃ = 1.11 ± 0.09 and
γ̃ = −0.74 ± 0.13, respectively. The large values of α compared to α̃ possibly indicate the quarantines efficiency.

by the many unexpected patients or because of a less obe-
dient population to the health systems regulations.

Spatial scaling. – One of the most important prop-
erties of epidemics spreading is its spatial propagation,
a characteristic which mainly depends on the epidemic
mechanism, human mobility and control strategy. While
the relation of human mobility to the epidemic spread has
been shown [24,25], a comprehensive picture of the epi-
demic spread in terms of distance, population size and
human mobility and their scaling relations is still missing.
We assume that the number of infected individuals in dif-
ferent provinces in China can be generally described as

I = f(r, m), (1)

where r is the distance of the province from Wuhan and
m is the population of the province. Since r and m are
independent of each other, one can assume and study the
scaling relation of each of them independently,

I ∼ rα (2)

and
I ∼ mβ . (3)

Since r and m are independent, eq. (1) can assume the
scaling form (in analogy with population mobility [26]),

I ∼ rν/mμ (4)

by which the relation ν/α − μ/β = 1 should be satisfied.
Using weighted least-squares regression for the scaling we
find in fig. 2(a) that α � −1.87±0.23 in agreement with a
recent study [27] and β � 1.18±0.20 as shown in fig. 2(b).
The minimization of the error of the exponents relation
yields that ν = μ � −0.84 ± 0.09. Thus, eq. (4) takes the
form

I ∼ (r/m)γ (5)

with γ = ν = μ � −0.84±0.09 as shown in fig. 2(c). Thus,
r/m can be regarded as a suitable distance-population pa-
rameter. The relation between these 3 exponents thus
reads

1/α − 1/β = 1/γ. (6)

In order to better understand the basic mechanism of
the disease propagation, we examine the relation of the
number of infected individuals in different provinces in
China with the population migration, Pm, from Hubei.
Our results shown in fig. 2(d) suggest an almost linear
scaling relation

I ∼ Pφ
m (7)

with φ = 0.96±0.25. This relation can be understood since
strict quarantines were applied in most cities in China af-
ter the shutdown of Wuhan traffic. The quarantines were
efficient to prevent infected individuals to spread the dis-
ease to other cities leading to a close to linear relation
between the number of infected individuals and the pop-
ulation migration from Hubei. This supports the relation
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Table 1: Spatio-temporal scaling exponents. Spatial: α is
the exponent of the spatial distribution of infected individuals,
eq. (2). β is the scaling exponent of the population, m, eq. (3),
and γ is the scaling exponent for the scaling function of the
distance-population ratio r/m, eq. (5). The exponent φ relates
the number of infected individuals to the measured number of
population migration with almost linear scaling, eq. (7). α̃,
β̃ and γ̃ are the exponents characterizing the scaling of the
population migration with r, m and r/m, respectively, eq. (8).
Temporal: P0 is the approximately constant infection rate in
early times while the disease is spreading. τ is the characteristic
time of the disease decay in later times, assuming exponential
decay, eq. (10). k is the growth parameter of the recovery rate,
eq. (13).

Spatial

α −1.87 ± 0.23
α̃ −1.37 ± 0.11

β 1.18 ± 0.20
β̃ 1.11 ± 0.09

γ −0.84 ± 0.09
γ̃ −0.74 ± 0.13

φ 0.96 ± 0.25

Temporal

P0 0.74 ± 0.55

τ 19.4 ± 8.3

k 0.027 ± 0.006

between the disease propagation and human mobility and
indicates that an earlier quarantine of Hubei could atten-
uate the worldwide spreading.

To further study the relation between population migra-
tion and the disease propagation we measured the popula-
tion migration number, Pm, as a function of the distance,
population and the distance-population parameter. We
assume the following scaling relations [26]:

Pm ∼ rα̃,

Pm ∼ mβ̃,

Pm ∼ (r/m)γ̃

(8)

with α̃ = −1.37 ± 0.11, β̃ = 1.11 ± 0.09 and γ̃ =
−0.74 ± 0.13 as shown in figs. 2(e), (f), (g), respectively.
These exponents for the population migration represent
the analogy of the exponents α, β and γ of the number of
infected individuals and follow a relation similar to eq. (6)
within the error bars. Interestingly, α̃ is lower than α and
it can possibly be understood by quarantines efficiency
which reduces the spatial spread of infected individuals
compared to the population migration. A summary of the
exponents of eqs. (2)–(8) can be found in table 1.

Temporal behaviour. – The absence of vaccination
makes the control of the disease very difficult and the main
action possible is to quarantine infected individuals and
those that were in contact with them in order to prevent
further spreading. This approach is effective but limited
since an infected individual can spread the disease before
showing illness symptoms. Nonetheless, an efficient quar-
antine strategy can succeed in controlling the disease and
a method to quantify its efficiency is needed. In addi-
tion, while a recent study showed that quarantine was effi-
cient resulting in a subexponential growth of the confirmed
cases in different cities in China [6], it did not show how it
affects the infection rate which is important for modeling.
Moreover, a temporal analysis of the death and recovery
rates is required as they may be affected by the health
system efficiency which might be overloaded. Here we will
analyze the temporal evolution of the infection, death, and
recovery rates under the quarantine restrictions in differ-
ent cities in China and compare it to different provinces
in Italy.

Since quarantines have been usually applied within and
between cities, studying the disease decay on a country
scale might lead to uncertain conclusion regarding the dis-
ease situation since the disease may propagate in one city
and decay in another. Thus, to further study the effect
of quarantines, we measured the infection rate in different
cities in China and different provinces in Italy. The infec-
tion rate, Pinfection(t), is measured for each city (province)
using the total number of infected individuals in the city
in a given day, I(t), from the first day that infected indi-
viduals have been detected in the city. The infection rate
at a given day is defined as the fraction of newly infected
individuals emerging from the total number of infected
individuals a day earlier

Pinfection(t) =
I(t) − I(t − 1)

I(t − 1)
. (9)

We examined three different types of cities in China:
a) cities in Hubei province, b) small cities and c) large
central cities as shown in figs. 3(a), (b), (c), respectively.
In all three cases, an approximately constant infection rate
is observed in early times. However, after a few days, a de-
cay in the infection rate is observed. Determining if the
decay is exponential or power-law cannot be certain due
to the few data points in the samples. Assuming exponen-
tial decay [28] gives a plausible consistent picture. In this
case, eq. (9) takes the form

Pinfection(t) =

{
P0, t0 < t < tx,

P0e
−(t−tx)/τ , tx < t,

(10)

where P0 is the constant infection rate without constraints,
t0 represents the time when the first infected individual
was detected in the city, tx is the time when the quaran-
tine starts and τ is the characteristic time for the disease
drastic reduction. The approximately constant infection

58003-p4



Spatio-temporal propagation of COVID-19 pandemics

Fig. 3: Two-stages infection rate. The infection rate Pinfection(t) for different types of cities: (a) cities in Hubei province,
(b) small cities in China and (c) large central cities in China and provinces in Italy. In early times an approximate constant
infection rate, P0 ∼ 0.74 ± 0.55, is usually observed (below the black horizontal dashed line). After a few days, an exponential
decay is observed in China representing the efficiency of the quarantines. The colored dashed lines are the best fit for the
exponential decay, eq. (10). The characteristic decay time τ in eq. (10) represents the time it takes to control the disease in
a city. Interestingly, while the infection rate in cities (provinces) in both China and Italy is decaying, the characteristic decay
parameter τ in Italy is several times longer than China due to different quarantine efficiency.

rate in early times represents the real infection rate of the
disease before quarantines were applied to control the dis-
ease while the exponential decay in later times represents
the efficiency of quarantines in reducing the infected rate.
Small values of the parameter τ indicate more efficient re-
strictions. The constant value tx is very similar in differ-
ent cities in China due to the similar emergency response
of other provinces with respect to the epidemic outbreak.
The exponential decay with low values of τ indicates that
quarantines are efficient to tame the disease in most cities
in China and indeed, in the last days of February, the in-
fection rate has been almost zero with rarely new cases as
seen in fig. 3. In marked contrast, the decay in Italy has
been slower with much larger values of τ indicating less
efficient quarantine strategy as seen in fig. 3(c). While
the infection rate might be biased by a different number
of tests and reporting policies [29], an efficient quarantine
should still result with a decay of the infection rate.

While the infection rate characterize the quarantine ef-
ficiency, the death and recovery rates can characterize the
health system efficiency which may be overloaded by the
unexpected amount of patients. The death and recovery
rates are defined as the fraction of the newly dead and re-
covered individuals at each day and the number of infected
individuals a day earlier,

Pdeath(t) =
D(t) − D(t − 1)

I(t − 1)
(11)

and
Precovery(t) =

R(t) − R(t − 1)
I(t − 1)

, (12)

where D(t) is the number of dead people at time t and
R(t) is the number of recovered at time t. The death rate
in Wuhan shows an approximate exponential decay similar
to the infection rate with characteristic time close to twice
longer. In marked contrast, the provinces with most cases
in Italy show much slower decay, as seen in fig. 4(a), which
indicates an overloaded health system.

The recovery rate in China increases exponentially as
the disease gets controlled with less new cases and can be
well approximated as

Precovery(t) ∼ ekt, (13)

where k is the growth parameter which might indicate
the health system efficiency. In Italy the recovery rate
is approximately constant, as shown in fig. 4(b), which
suggests, similarly to the death rate, an overloaded health
system as shown in fig. 4(a).

The temporal parameters characterizing the infection,
death and recovery rates are found to be similar for most
cities in China with P0 in the range 0.5–2 with an aver-
age of 0.74 and a standard deviation of 0.55 as shown in
fig. 5(a). The value of τ for most of the cities is 10–30days
while for a few cities the characteristic time can be longer
as seen in fig. 5(b). The value of τ may characterize the
efficiency of quarantines. The average value of τ is 19.4
with standard deviation 8.3. The values of k are in the
range 0.015–0.045 and may characterize the health system
efficiency. The average value of k is 0.027 with standard
deviation 0.006. A summary of the temporal parameters
can be found in table 1. The similar values of the tempo-
ral parameters in most cities in China are consistent with
the strict quarantine applied to them simultaneously.

Discussion and summary. – While many countries
have been struggling to overcome the first wave of the
COVID-19, China controlled it relatively fast with ap-
proximately 20 days of controlling time in most of the
cities. Controlling the disease is not easy, the spread
of the disease is highly related to population migration
which is assumed to follow a Lévy flight behavior, a char-
acteristic of human mobility with long jumps which spread
the disease rapidly. The incubating period together with
the Lévy flight long jumps make the disease very hard
to control since by the time that an infected individual
is detectable, she/he can already perform a long-distance
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Fig. 4: Death and recovery rates. (a) The death rate in Wuhan
shows an approximate exponential decay similar to the infec-
tion rate (other cities show poor statistics). The characteristic
decay time τ is about twice the time for the death rate than
for the infection rate. Provinces in Italy with most cases show
much slower decay suggesting an overloaded health system.
(b) The recovery rate in China shows an approximate exponen-
tial growth as the disease is getting controlled, eq. (13). The
growth parameter k characterizes the health system efficiency.
Provinces in Italy with most recovery cases do not show growth
and remain approximately constant suggesting an overloaded
health system as suggested by the death rate.

trip and further spread the disease. This spatial dynam-
ics is very important and should be taken into account in
epidemic modeling. Despite these difficulties, an efficient
quarantine strategy could control the disease leading to
an exponential decay of the infection rate. This decay is
characterized by the characteristic decay time τ and allows
a quantitative comparison between quarantine strategies
performed in different places. In fact, the lifetime of the
disease in a city is characterized by two stages, uncon-
trolled infection in early times (for few days) and decay-
ing stage in later times once quarantines start to have an
effect. These two stages can explain the temporal dynam-
ics of the disease situation in China in the first wave and

Fig. 5: Statistical properties of the temporal behaviour of cities
in China (a) The constant infection rate, P0 is mostly in the
range 0–2 while in a few cities it is much larger. The average
value is 0.74 with standard deviation 0.55. (b) The distribution
of the exponent τ characterizing the extinction of the disease
which was found to be in the range 10–50 days. The average
value is 19.4 with standard deviation 8.3. (c) The distribution
of k characterizing the recovery rate which reflects the health
system efficiency and is found to be in the range 0.015–0.045.
The average value is 0.027 with standard deviation 0.006. The
parameters are very similar in most cities in China consistent
with the strict quarantine applied to them simultaneously.

explain the situation in other locations in the world where
similar strategies have been only partly adopted. More-
over, this two-stage process is very important for modeling
since one should take into account how the infection rate
changes in time due to quarantine strategies.
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In addition, while the temporal dynamics of the in-
fection rate is related to the quarantine efficiency, the
temporal dynamics of the death and recovery rates is
more related to the health system efficiency which may be
overloaded or inefficient. Even though different countries
are characterized by different age population distribution
which suffers from different mortality rates [30], a sharp
rise of the death rate (or very slow decay) may indicate
an overloaded health system. The same conclusion applies
for the case of a decay of the recovery rate.

Our analysis can also be performed for other countries
to determine and compare their policies’ efficiency. How-
ever, when such an analysis is being conducted, one must
be sensitive to two important details. The first is the
spreading origin of the disease in the country. This is a
crucial factor in having a quality analysis of the spatial
propagation of the disease (fig. 2). While the origin of the
disease in China is known to be Wuhan, in many countries
the origin is unknown, and in others, there are multiple
origins due to spreading from different countries. The sec-
ond is the temporal analysis resolution. In our work, we
focused on the spreading within cities (fig. 3) since the
disease may spread in one city and decay in another. This
information can be lost if the analysis is conducted on a
large scale. For example, if one analyzes the temporal
spread in different states in the USA, it will represent a
too low resolution and better estimation can be obtained
using city resolution analysis.

Our work highlights the importance of efficient quaran-
tine strategies and the strong relation between population
migration and the disease spreading. Moreover, our re-
sults suggest that an early action may attenuate the dis-
ease propagation and prevent an overload of the health
systems which have not been ready for the large amount
of unexpected new patients.
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