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Hopping percolation transition in granular ferromagnets
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We present computer simulations of the magnetotransport properties of two-dimensional and
three-dimensional granular ferromagnets using a random resistor network in which the conductivity,
�, between pairs of neighboring grains depends upon the intergrain distance ���exp�−�r�, where
� is a measure of disorder and r is a random number, 0�r�1� and the relative magnetic
orientations. We study the resistance �R� distribution function, P�R�, and find that in both the weak
disorder regime L /���1 �not sensitive to the removal of any single bond� and the strong disorder
regime L /���1 �very sensitive to such a removal� the distribution depends only on L /�� and can
be well approximated by a log-normal function with dispersion b�� /L, where b is a coefficient
which depends on the type of the lattice and � is the critical exponent of the percolation correlation
length. © 2006 American Institute of Physics. �DOI: 10.1063/1.2176912�
Granular metals consist of composite mixtures of metal
and nonmetal materials. When the metal concentration is
small the metal forms small islands embedded in an insulat-
ing matrix. In this configuration the electric conductivity is
governed by hopping between different grains. The elec-
tronic properties of such systems have been studied for many
years;1 nevertheless many issues related to the conduction
mechanism are still poorly understood. The case in which the
metallic grains are ferromagnetic is of special interest since
these systems have been found to exhibit a giant magnetore-
sistance �GMR� effect due to spin dependent tunneling be-
tween grains.2 A peculiar feature which is found in dilute
discontinuous two-dimensional �2D� Ni films is the occur-
rence of sharp resistance jumps as a function of the applied
magnetic field.3 These were interpreted as the result of mag-
netomechanical distortions at a bottleneck grain which domi-
nates the transport in systems which are on the percolation
edge. This model is based on the notion that the electric
conductivity is governed by the resistance of a local configu-
ration of few grains, although there are 109 grains in the
system. Recently we tested this hypothesis by modeling the
granular system by a network of random resistors and study-
ing their transport properties using numerical simulations.4

We found a good agreement with the experimental results. In
this paper we further develop the model and compare it to a
three-dimensional �3D� sample.

Granular samples for which measurements have been
performed3 were prepared by quench condensation, i.e., se-
quential evaporation on a cryogenically cold nonpassivated
substrate such as SiO2 under UHV conditions while monitor-
ing the film’s thickness and resistance. The measurements
which are presented in Fig. 1�a� were performed by evapo-
rating Ni on a 2�2 mm2 square between two large Ag pads
so a two-probe electric contact configuration is obtained. The
growth process was terminated at the point at which an elec-
tric conductivity could first be detected across the sample. At
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this stage, the resistance was larger than 100 M	 and a typi-
cal Ni grain radius is about 100 Å �height �20 Å�. Thus, the
sample contains about 1010 grains.

The hopping resistance Rij between two neighboring fer-
romagnetic grains �labeled by i and j� depends on two main
factors: the grain-to-grain distance �expressed in this work as
�r�ij�, where � is as the degree of the spatial disorder and
r�ij� is a random number taken from uniform distribution in
the range �0,1�� and the mutual orientation of the magnetic
moments, M, of these grains �described by orientation angles

 and � of the magnetic moments�,

Rij = R0�1 − � �R

2R0
�2

�1 + cos 
ij�2	e�r�ij�, �1�

where R0= �R��+R��� /2, �R= �R��−R��� /2, and cos 
ij

=cos 
i cos 
 j +sin 
i sin 
 j cos��i−� j�. It is taken into ac-
count that the electron spin direction may be parallel or an-
tiparallel to the direction of the magnetic moment of the
initial grain and the moment of the final grain. If parallel, the
electron experiences weak scattering and hence a low resis-
tance R��; if antiparallel, the electron experiences strong scat-
tering and hence a high resistance R�� �see Refs. 4–7�. The
magnetic moment Mi of the ferromagnetic grain is assumed
to be always parallel or antiparallel to its randomly distrib-
uted easy axis. Once a magnetic field H is turned on, it can
switch the direction of the magnetic moment if the strength
of the magnetic field is such that the average magnetization
of the sample is larger than the grain magnetic moment Mi.
Thus the grain magnetic moment will flip once Mi ·H
�L�h�
coth�h�−1/h, where L�h� is Langevin function, h

MiH /kBT, and T is the temperature.4

We model the granular Ni film studied in Ref. 3 by a
Miller-Abrahams7 square 2D bond-percolating resistor
network.4 We insert a resistor with random tunneling resis-
tance Rij �see Eq. �1�� between neighboring sites, then we
solve the obtained system of linear Kirchhoff equations and

calculate the total effective resistance, Re, of the 2D and 3D
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networks as well as the values of the local current on each
resistor.4,8,9

In order to check our numerical scheme we present in
the inset in Fig. 1�a� the dependence of the macroscopic
effective resistance Re vs � and compare them with analyti-
cal formulas obtained by us using the symmetric self-
consistency effective-medium approximation10 �EMA�
�where in the case of EMA �R�
�Rij� and �¯� denotes the
effective-medium averaging over the sample, while in the
case of numerical simulations �R�

n=1

N Rn /N means the sta-
tistically averaged value of R�. If the local conductivities of
R are distributed continuously in a range Rmin�R�Rmax ac-
cording to some distribution function f�R�, then the macro-
scopic effective Re can be found by taking the integral

�
Rmin

Rmax

f�R�� R − Re

aR + Re
�dR = 0, �2�

where a=z /2−1 and z is the number of bonds at each node
of the network. If r�ij� in Eq. �1� is uniformly distributed
between 0 and 1, then f�R�=1/�R and R is varied in the
range R0�R�R0e�. From the integral �2� we get ln��aR

+Re��1+a�/a /R�R0

R0e�
=0, and, therefore,

Re = R0e�pc�1 − pc

pc
�� 1 − e−�pc

1 − e−��1−pc�	 , �3�

where pc=1/ �1+a�=2/z. In the case of 2D square lattice
�z=4, see Ref. 8�, Re=R0epc�, which could be found as an

11

FIG. 1. �a� Experimental data of the relative magnetoresistance �R�H� /R�0�
vs magnetic field H �in Tesla� of a dilute granular Ni sample for T=4 K �see
Ref. 3�. The values of � and system size, L, realized in these experiments
�Ref. 3� can be estimated as ��102–103 and L�105. ��b� and �c�� Theo-
retical drawings of the similar quantity �R�h� /R�0� vs h
MH /kBT ob-
tained from numerical simulations on a random bond-percolating resistor
network of the size L=100 with �=40 �see �b�� and �=4 �see �c��.
R�� /R��=4. The inset in �a� is a semilog plot of the averaged resistance Re vs
�. In the case of site percolation �pc=0.593� the slope of the curve �shown
by solid hexagons� is close to 0.6, while for the case of bond percolation
�pc=0.5� the slope of the curve �shown by empty squares� is equal to 0.5 �cf.
with Eq. �3��. The insets in �b� are the zoomed fragments of the megne-
toresitance curve.
exact result directly from the Keller-Dykhne theorem or as
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an approximate expression12,13 �see also inset to Fig. 1�a��.
In Fig. 1�a� we show the experimental data of the rela-

tive magnetoresistance �R�H� /R�0�
�R�H�−R�0�� /R�0�
�where R�H� is the total sample resistance at magnetic field
H� obtained for a dilute Ni granular 2D sample versus the
applied magnetic field �see Ref. 3� and in Figs. 1�b� and 1�c�
we plot �R�h� /R�0�
�R�h�−R�0�� /R�0� obtained from our
numerical simulations versus h, which is proportional to the
applied magnetic field. In the experimental data the pro-
nounced noise, as the magnetic field is swept back and forth,
can be seen clearly. Similar behavior is observed in the simu-
lation curves when the disorder ��� is large enough. For a
higher value of � �which corresponds to more dilute
samples� stronger jumps in the magnetoresistance curves are
observed �see insets in Fig. 1�b��. Our results suggest that the
jumps observed in both experimental and theoretical curves
are a result of magnetic moment flip �due to applied mag-
netic field� at a bottleneck grain, leading to switches between
different current trajectories.

In order to test this hypothesis, we perform the following
numerical simulations: We remove from the network the re-
sistor on which the local current is maximal. In this way we
hope to determine the conditions for a single bond to domi-
nate the conductivity of the system. Such a removal of a
dominating single bond could change the trajectory of the
current along the spanning cluster which should affect the
system transport properties, e.g., the Ohmic effective 2D re-
sistivity. Therefore, the ratio Rcut /R �where R denotes the
resistivity of the system prior to the removal of the resistor
and Rcut is the resistivity after removing it� is an efficient
characteristic of disorder. We expect that the ratio will be
stronger for a larger disorder. In Fig. 2�a� we show a semilog
plot of the statistically averaged value of the ratio Rcut /R vs
� for various sizes of systems L=10–200. In Fig. 2�b� we
present the scaling behavior of this ratio. It is found that
Rcut /R scales well as a function of �� /L, where � is the
critical exponent of the percolation correlation length �� �p
− pc�−� �in 2D �=4/3�1.33, while in 3D ��0.88 �Ref. 12��.

We study also the probability distribution function P�R�

FIG. 2. �a� A semilog plot of the mean value of the ratio Rcut /R vs
� for various sizes of the system: L=10,20,30,40,50,100,200
�from top to bottom�. �b� A semilog scaling plot of the same
quantity vs �� /L. The dashed line shows the analytical fit found using

Eq. �4�: ln Rcut /R=�
R

cut min
�e�

Rcut max
�e�

ln�R� /R�P�R��dR�= �� /�4�� exp�−4.52 /2�2�,

since Rcut max
�e� →� and the value ln�Rcut min

�e� /Re�=4.5 is found empirically.
�i.e., the probability that the total resistance of the system is
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R� for systems of different sizes L and different disorders �.
In Fig. 3�a� we present numerical results suggesting that
P�R� can be approximated by the log-normal form

P�R� � ��2��R�−1 exp�− ln2�R/Re�/�2�2�� , �4�

where �=��pc��� /L for both 2D and 3D cases �in 2D is
found that ��0.5�.

In summary, the recently observed features of the elec-
trical transport in dilute granular Ni films,3 which are be-
lieved to be governed by a very small number of grains, are
explained using Monte Carlo resistor network simulations.
The dependence of the simulated magnetoresistance versus
the applied magnetic field is similar to the experimental mea-
surements and indicates that few resistors or even a single
one can govern the total conductivity. This is not expected
from a pure percolation picture where the number of red
bonds on which the current is maximal scales as L1/� �see
Ref. 14�, i.e., of the order of a few hundreds in the macro-

FIG. 3. �a� A scaling plot of RP�R /Re� vs �R /Re�L/��
. The dashed line

represents the analytical result �4�, with b=0.2 and �=4/3 for nine systems
with L=500, �=22 ���; L=300, �=15 ���; L=200, �=10 ���; L=100,
�=10 ���; L=50, �=30 ���; L=40, �=40 ���; L=30, �=20 ���; L=20,
�=40 ���; and L=20, �=30 ���; �b� similar to �a�, but for 3D, with b
=0.18 and �=0.88 for three systems with L=20, �=15 ���; L=26, �=15
���; and L=10, �=6.8 ���. �h=1.85�. The dashed line is the analytical
result �4�.
scopic system considered here. On the other hand, the strong
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disorder limit of our model yields a single bond that domi-
nates the conductivity. The obtained experimental and theo-
retical results can be used in the development of magnetore-
sistive devices based on single-grain effects.
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