
1.  Introduction
Earthquakes are a major threat to society in many countries around the world. Currently, a skillful and 
trustworthy earthquake forecasting approach for both short and long time scales is missing. Yet, it is nec-
essary to establish reasonable reduction strategies of seismic risk and enhance alertness and resilience. In 
most cases, seismologists are not yet able to predict individual large earthquakes even very close to the event 
(de Arcangelis et al., 2016; Jordan et al., 2011).

Earthquake catalogs are usually restricted to specific regions and include the magnitude, location, and time 
of earthquakes. Several seismic laws have been discovered based on earthquake records. According to the 
Gutenberg-Richter law, the number of earthquakes N  (above a magnitude M) drops exponentially with the 
magnitude such that, 10log N a bM  , where 1b   and a is related to the earthquake rate (Gutenberg & 
Richter, 1944). Most earthquakes are distributed along active seismic faults which can be clearly seen in 
the global catalog (Ide, 2013). In addition, aftershocks occur around the epicenter of the mainshock and 
the distribution of distances from the mainshock follows a power law decay (Huc & Main, 2003; Marsan & 
Lengliné, 2008; Ogata, 1988), which is related to the static or dynamic stress triggering mechanism (Lippiel-
lo et al., 2009; Richards-Dinger et al., 2010).

Abstract  Here we focus on a basic statistical measure of earthquake catalogs that has not been 
studied before, the asymmetry of interevent time series (e.g., reflecting the tendency to have more 
aftershocks than spontaneous earthquakes). We define the asymmetry metric as the ratio between the 
number of positive interevent time increments minus negative increments and the total (positive plus 
negative) number of increments. Such asymmetry commonly exists in time series data for nonlinear 
geophysical systems like river flow which decays slowly and increases rapidly. We find that earthquake 
interevent time series are significantly asymmetric, where the asymmetry function exhibits a significant 
crossover to weak asymmetry at large lag index. We suggest that the Omori law can be associated with the 
large asymmetry at short time intervals below the crossover whereas overlapping aftershock sequences 
and the spontaneous events can be associated with a fast decay of asymmetry above the crossover. We 
show that the asymmetry is better reproduced by a recently modified Epidemic-Type Aftershock Sequence 
(ETAS) model with two triggering processes in comparison to the standard ETAS model which only has 
one.

Plain Language Summary  Earthquakes are often associated with non-equilibrium 
and nonlinear underlying processes which can lead to asymmetric behavior in metrics derived from 
earthquake records. By asymmetry we are referring to “the tendency of more events to occur after 
a previous one than before the next one” or vice versa. In earthquake sequences the main source of 
asymmetry is the occurrence of large numbers of aftershocks due to the earthquake triggering. We find 
here that the distributions of interevent time increments in real seismic catalogs are asymmetric and 
that the degree of asymmetry is characterized by a scaling function that exhibits a crossover, from a high 
asymmetry at short times to low asymmetry at long times. We suggest that different earthquake triggering 
processes are associated with these two distinct regimes of asymmetry. We apply the asymmetry analysis 
to an earthquake forecasting model–the Epidemic-Type Aftershock Sequence (ETAS) model and find that 
the new generalized ETAS model that includes both short- and long-term triggering mechanisms better 
reproduces the observed asymmetry than the standard ETAS model.
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The temporal occurrence of spontaneous earthquakes (mainshocks) are commonly assumed to follow a 
Poisson process with an underlying stationary rate (Ogata, 1988). The Omori law states that the occurrence 
rate of aftershocks follows as a power law decay with time (Utsu, 1961, 1972). The probability distribution of 
the (scalar) interevent times of successive earthquakes in a certain region has been found to satisfy a scaling 
function; it is well fitted by a general gamma distribution in real data (Bak et al., 2002; Corral, 2003, 2004) 
similar to that found later in rock fracture experiments in laboratories (Davidsen et  al.,  2007). Some of 
the theoretical framework of the interevent times is based on the Gutenberg-Richter and the Omori laws 
(Saichev & Sornette, 2006; Sornette et al., 2008). Yet, there is some criticism regarding the universal scaling 
with the region size (Touati et al., 2009).

Another dominant feature of earthquakes is the clustering (memory) in space and time (Zaliapin & Ben-Zi-
on, 2013; Zaliapin et al., 2008), generally at shorter time scales, including those for earthquake aftershock 
sequences and swarms. In addition, long-range memory in the time series of interevent times has been 
found using detrended fluctuation analysis (DFA) (Lennartz et al., 2008); strong memory was also found 
using the conditional probability of successive events (Livina et al., 2005). Some clustering models such as 
the Epidemic-Type Aftershock Sequence (ETAS) model (Ogata, 1998) and the short-term earthquake prob-
ability (STEP) model (Woessner et al., 2010) have been developed based on the short-term spatiotemporal 
clustering in earthquakes. In the ETAS model, the productivity parameter   is critical in controlling the 
short-term memory of interevent times (Fan et al., 2019). Furthermore, an extended analysis of both short-
and long-term memory of interevent times in real data and the ETAS model (Zhang et al., 2020) indicated 
that the inferred memory at all timescales cannot be captured by the ETAS model. A generalized (bimodal) 
ETAS model with two  -values was proposed to capture short- and long-term aftershock triggering mech-
anisms (Zhang et al., 2021); this model reproduced the observed memory behavior in both short and long 
time scales as found in real catalogs. This could be due to a sudden stress change in short time scale and 
subsequent viscous relaxation in long time scale.

The occurrence of aftershocks produces an obvious asymmetry in the time series, with more events after 
a previous one than before the next on the timescales of a single sequence. However, we may expect this 
asymmetry to degrade at longer timescales, where spontaneous events and the likelihood of overlapping 
aftershock sequences destroying the correlation increases, as proposed by Touati et al. (2009). Asymmetry 
widely exists in nature (An, 2004; Hutchinson et al., 2013) in time series for various geophysical phenom-
ena including the glacial-interglacial cycles (rapid warming followed by gradual cooling), the sunspot cy-
cle (11 years) (Hoyt & Schatten, 1998), and river flow which decays slowly and increases rapidly (Livina 
et al., 2003). In many cases, such asymmetry can be related to underlying non-equilibrium and nonlinear 
underlying processes in a physical system (King, 1996; Schreiber & Schmitz, 1996). For instance, in the cli-
mate system, due to cyclone activity, surface daily mean temperature warms gradually and cools rapidly at 
the mid-latitudes leading to the temporal temperature asymmetry in the temperature time series (Ashkena-
zy et al., 2008). Here, we investigate asymmetry in earthquake time series. For triggered events, the Omori 
law implies that the interevent time increases with time after a mainshock. Thus, one expects asymmetry 
in earthquake catalogs at short to intermediate time scales where there are not too many overlapping after-
shock sequences. For the spontaneous events, the interevent time is simply assumed to follow an exponen-
tial distribution with a constant rate, and asymmetry is not expected in this (Poisson process) case. In the 
following we show that the degree of asymmetry changes when considering the lagged interevent times.

2.  Materials and Methods
2.1.  Asymmetry

Based on earthquake catalogs, we consider seismic events above a certain magnitude threshold (i.e., the 
magnitude of completeness for the given catalog). For this sequence, we define the time interval between 
two successive earthquake events 1i   and i as the interevent time i  (in days). The lagged interevent time 
increment is defined as ( )k

i i k i      for a lag k  where k  is a positive integer lag. Following the above, the 
asymmetry measure of interevent times is defined as the ratio between the number of positive interevent 
time increments, pN , minus the number of negative increments, nN , and the total (positive plus negative) 
increments (Ashkenazy et al., 2008):
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where Θ( ) 1   when 0   and otherwise it is zero. We exclude the zero increments ( ) 0k
i   from the 

calculation; the number of zero increments is indeed very small. U  is bounded between −1 (monotonically 
decreasing sequence) and 1 (monotonically increasing sequence). When U  is close to zero, the time series is 
symmetric (for example, the PDF is nearly symmetrical close to ( ) 0k   for 1k   but highly asymmetric 
for 10k   and 50k   in Figure 2a). For instance, if the asymmetry value of U  1 3/ , the number of positive 
increments pN  is twice the number of negative increments nN  (i.e., pN  = 2 nN ). The positive (negative) in-
crement of the interevent time represents the decreasing (increasing) earthquake rate. Similarly, we define 
the asymmetry of the interevent distance ir  (in km) between the epicenters.

2.2.  Generalized ETAS Model

We also study the asymmetry of synthetic catalogs based on the ETAS model in comparison to the asym-
metry observed in the time series of real records. We use the ETAS model as a null hypothesis, since it is 
the most widely used statistical model to simulate the spatiotemporal clustering of seismic events (Oga-
ta, 1988, 1998). The earthquake sequence in the ETAS is defined as a stochastic Hawkes (point) process. We 
use the Gutenberg-Richter law (where 1b  , truncated at maxM ) to independently generate the magnitude 
of each earthquake (≥ 0M ). For the ETAS model, the conditional intensity function  (which is basically the 
rate of earthquakes) at time t with the seismic history tH  prior to t is given by

 t H f m t tt
i ti t

i i| , ,
:

      


� (2)

where  is the background rate to generate spontaneous earthquakes estimated from the real catalogs 
(Zhuang, 2012; Zhuang et al., 2010). The occurrence times of the past events are represented as it , and their 
magnitudes are iM  (≥ 0M ). Future earthquakes can be triggered by each past earthquake according to the 
generalized triggering function which here includes two triggering processes (Zhang et al., 2021), as
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where 1n   is the total number of past events. The productivity of triggering earthquakes is controlled 
by the two productivity parameters 1  and 2  corresponding to the short-term ( ci n n  ) and long-term  
( ci n n  ) triggering respectively, which satisfy 1 2  . If the interevent number n i  is smaller than the 
crossover number cn , the n-th earthquake can be trigged by the i-th historical earthquake with a higher 
rate according to the larger 1 . The crossover number cn  is equal to 010 bMh   which is estimated from the 
memory measure of real earthquake catalog as reported by Zhang et al. (2021). Also, we use the parameters 

1 2{ , , , , , }A c p h    in Equation 3 estimated from real earthquake catalogs (Zhang et al., 2021). The generalized 
ETAS model reduces to the standard ETAS model if 1 2  . We add only two parameters, 2  and cn  to the 
standard ETAS model and all other parameters remain the same. Note that when 1  is different with 2 , 
Equation 3 is a discontinuous function. Yet, it is very hard to observe a systematical discontinuity in syn-
thetic catalogs of the generalized ETAS model as well as real data, since the cascading triggering process of 
aftershocks can weaken the discontinuity (Zhang et al., 2021).

2.3.  Data

We analyze the Italian earthquake catalog between 1981 and 2017 (Gasperini et al., 2013). We also ana-
lyzed the Japan Unified High-Resolution Relocated Catalog for Earthquakes (JUICE) between 2001 and 
2012 (Yano et al., 2017) and the Southern California catalog from 1981 to 2018 (Hauksson et al., 2012). The 
three catalogs are complete for magnitude threshold 3.0 (Gasperini et al., 2013; Hauksson et al., 2012; Yano 
et al., 2017) and this is also shown in Figure S1 where the distributions of the magnitudes (≥3) follow the 
Gutenberg-Richter law.
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3.  Results
First, we obtain interevent times of the Italian earthquake catalog (using the threshold of magnitude 

0 3.0M  ) and their increments for the lag index 50k  . The results are shown in Figure 1. As can be seen, 
interevent times decrease abruptly and then increase gradually after the occurrence of a large earthquake 
(Figure 1a), consistent with the Omori law. The increments are very small immediately after large shocks 
even for 50k  , and most of them are positive (see inset figure) in Figure 1b. After sufficient time from a 
main shock, a crossover time, the rate of aftershocks decreases and the interevent increments become sym-
metric and switch between negative and positive values. Moreover, Figure 1b shows that the interevent time 
increments for lag 50k   tend to be negative before the occurrence of large earthquakes. This observation 
can be explained as follows. The event time intervals before the main shock are relatively large in compar-
ison to the event time intervals after the main shock, since the earthquake (aftershock) rate after the main 
shock is high. The difference between time interval for lag 50k  , ( 50)k

i
 , as approaching the main shock, 

involves the subtraction of a long time interval before the main shock from a short time interval after the 
main shock, leading to negative ( 50)k

i
 . Thus, ( 50)k

i
  will be negative 50 lags preceding the main shock.

Figure 2a shows the probability density function (PDF) of the interevent time increments for different k. 
The PDFs are essentially asymmetric about ( ) 0k   when k  increases and the asymmetry is dominated 
by the points close to ( ) 0k  . To verify the significance of the asymmetry, we randomly shuffled the time 
series of interevent times and produced 100 shuffled sequences. This shuffling procedure destroys the (tem-
poral) aftershock clustering such that the number of positive and negative increments should be similar. 
As a result, the number of small increments decreases and the number of large increments increases and 
the peak of the PDF (see gray shades in Figure 2a) is much lower than the peak of the PDF of the original 
catalog. For a larger increment lag of 10k  , 50, the PDF becomes more asymmetric in comparison to PDF 
with 1k   and the PDF of the shuffled data (Figure 2a). More positive increments are observed for the larger 
lag index k.

To quantify the level of the asymmetry, we calculate the measure U  as a function of lag index k  using Equa-
tion 1. Figure 2b depicts, for the Italian catalog, the measure U  for the interevent times (red) as a function of 
the lag increment k. The asymmetry measure, U , increases with k  for k  below a crossover lag, 50ck  , and 
decreases with k  above the crossover ck ; U  is maximal at the crossover ck  until it is indistinguishable from 
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Figure 1.  Time series of (a) interevent times (log scale) and (b) their increments for k = 50 for the Italian catalog 
(1981–2017) using magnitude threshold 3.0. The inset figure shows the increments immediately after a large shock, 
indicating large asymmetry even for 50k  . The black dashed vertical lines show the large earthquakes (magnitudes 

5.8 ). Note the episodes of very small ( 50)k   after large earthquakes; yet, these occur during very short time and will 
hardly visible when plotting ( 50)k   versus time.
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the random process shown at high k. As discussed above, we expect the 
presence of asymmetry in the interevent times following the Omori law 
(Figures 1 and 2a). Yet, the non-monotonic behavior with maximal asym-
metry at ck  is not trivial which implies a transition between the effect of 
the Omori law and a random process. We also calculated the asymmetry 
measure, U , for interevent distances (green symbols in Figure  2b) and 
observed similar behavior as for the interevent times, although much less 
pronounced. The results of shuffled, symmetric, time series (gray shaded 
area) are also included in Figure 2b and indicate significant asymmetry 
for interevent times compared to this null hypothesis over a wide range 
of lags ( 300k  ). For interevent distances we observe weak asymmetry 
only around lag 100k  .

We also calculated the asymmetry measure, U , for three magnitude 
thresholds and three places. Figures 3a, 3c and 3e show U  versus the in-
dex k  for the interevent times when using different magnitude thresholds 

0 3M  , 3.3 and 3.6 for the catalogs of Italy (IT), Southern California (SC) 
and Japan (JA). The asymmetry measure, U , exhibits similar increas-
ing and decreasing trends for all three catalogs. The crossover lag, ck  (at 
which the asymmetry is maximal), is smaller for the larger magnitude 
threshold (see Figures 3a, 3c and 3e). According to the Gutenberg-Richter 

law, the number of earthquakes decreases exponentially with the increasing magnitude threshold. Thus, we 
rescale the lag k  with 010bMk  and the results are shown in Figures 3b, 3d and 3f. The different asymmetry 
curves collapse into a single curve for which the crossover is 010bM

ck ; this scaling approach is similar to the 
scaling procedure of interevent times discussed in previous studies (Bak et al., 2002; Corral, 2003; Saichev 
& Sornette, 2006; Sornette et al., 2008). However, the crossovers are not the same for different places. For IT, 
the rescaled crossover lag is, 4010 5 10bM

ck    and is smaller than the crossovers for JA ( 5010 2 10bM
ck   )  

and SC ( 5010 3 10bM
ck   ). The asymmetry curves also satisfy the scaling relation by rescaling the lag k  with 

the averaged time intervals   as shown in Figure S2. We thus obtain that the crossover times approximate-
ly correspond to 80, 280, and 50 days for IT, SC and JA respectively. We also consider and observed the asym-
metry for different region sizes as shown in Figure S3a. A smaller region size shows a larger asymmetry 
since more events (aftershocks) are correlated within the area as proposed by Touati et al. (2009). Moreover, 
the crossover can be scaled with respect to region size in Figure S3b. Figure S4 shows the weak asymmetry 
for the global earthquake catalog.

We now aim to explain the mechanism underlying the observed asymmetry measure. Considering a simple 
situation, for which aftershocks B–F are the first generation aftershocks triggered by a mainshock A, as 
shown by the schematic drawing in Figure 4a. Due to the Omori law, the frequency of aftershocks decreases 
like 0( ) pt t   (p is close to 1 and 0t t  is the time since the mainshock) such that the interevent time   after 
the mainshock follows 0( )pt t   . Thus, the interevent time statistically increases with time, resulting in a 
positive asymmetry with more positive increments in comparison to negative increments. However, the real 
situation is more complex as not only mainshocks can trigger aftershocks but aftershocks can also trigger 
other aftershocks. Moreover, spontaneous earthquakes (mainshocks) could be mixed with aftershocks due 
to the stacking involved (see the example in Figure 4b). The indirect triggered events and the spontaneous 
events can decrease the interevent times as shown in Figure 4b ( 2 , 3  and 5  are smaller than 1 ). The above 
considerations implies that the events below the crossover lag ck  are mainly triggered by a mainshock. 
Above the crossover ( ck k ), the sequences for spontaneous and triggered events will overlap with high 
probabilities resulting in a fast decay of asymmetry.

The ETAS model is widely used to simulate and study the temporal clustering of seismic events (Oga-
ta, 1988, 1998). The rate function of the ETAS model consists of the spontaneous (background) rate and 
triggering rate of historical events (see Equation 2). The choice of parameters in the ETAS model is crit-
ical to reproduce the features of real earthquake sequences. The maximum likelihood estimation (MLE) 
procedure has been proposed (Zhuang et al., 2010) to estimate the parameters. In a recent study (Zhang 
et al., 2021) the conventional ETAS model has been found to be unable to reproduce important (long-term) 
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Figure 2.  (Color online) (a) Probability density function of interevent 
time increments ( )k  for different lag index k for the Italian catalog 
with the threshold 0 3.0M  . (b) The asymmetry measure U  versus the 
index k for the interevent times (red)   and distances (green) r for the 
Italian catalog with 0 3.0M  . Gray shades show the results of the shuffled 
(randomized) interevent times and distances and their standard deviations; 
these overlap each other. The dashed black line in panel (b) indicates the 
crossover lag 50ck   at which the asymmetry measure U  for interevent 
times is maximal.
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memory characteristics observed in real catalogs. In the same study a generalized the ETAS model has been 
developed and found to be useful in reproducing the observe memory features that appear in the real cat-
alogs (see Materials and Methods). Below we test the asymmetry of the generalized ETAS model for Italy 
with three choices of parameters: (a) 1 2     such that the generalized model reduces to the standard 
ETAS model. The parameters are estimated using the MLE. This choice is termed “EM0.” (b) Since some 
studies have reported that the  -value is underestimated by the MLE (Marzocchi & Lombardi, 2009; Seif 
et al., 2017; Zhuang et al., 2019), we consider a second choice of parameters termed “EM1,” which is the 
same as EM0 but with larger   (and smaller A to guarantee the similar branching ratio) (Equation 3). (c) 
The generalized ETAS model with 1 2   developed recently (Zhang et al., 2021). This choice is termed 
“EM2.” The selected parameters of EM0, EM1 and EM2 for the Italian catalog are listed in Table 1. We 
generated 50 realizations of synthetic catalogs with magnitudes greater than or equal to magnitude 3, each 
covering 50,000 days. The earthquake rates are 0.690.03, 0.730.1, and 0.710.06 events per day for EM0, 
EM1, and EM2, respectively. The rates of the models are similar and close to that of the real data.
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Figure 3.  (Color online) The asymmetry measure U  versus the index k for the interevent times with different 
magnitude thresholds 0 3M  , 3.3 and 3.6 for the earthquake catalogs of (a) Italy (IT), (c) Southern California (SC), 
and (e) Japan (JA). (b, d, and f) Same as (a, c, and e) but x-axis is rescaled as 010Mk . Dashed black lines indicate the 
approximate crossover lag.
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Next, we study the asymmetry for the three versions of the ETAS model introduced above. Figure 5a shows 
that the asymmetry of the interevent times in the standard ETAS, EM0, in marked contrast with real asym-
metry, deceases with the lag index k  without a crossover for EM0 (green dots). Both, EM1 (red squares) 
and EM2 (green triangles) exhibit much better performance and their asymmetry curves are similar to 
the real catalog (dotted line). Due to the smaller   in EM0 relative to EM1, the probability of aftershocks 
directly triggered by a large mainshock is too low to increase the asymmetry for EM0. Thus, the asymmetry 
deceases as the lag index k  increases at the beginning rather than after a certain lag. The asymmetry of 
EM0 demonstrates that the  -value is indeed underestimated by MLE. Comparing between EM1 and EM2, 
the asymmetry of EM2 decays faster above the crossover, more similar to the decay of the real catalog, the 
dotted line (see Figure 5a). Moreover, the crossover point is different for EM1 ( 60ck  ) and EM2 ( 50ck  ). 
Thus, the crossover of EM2 is closer to the observed one (Figure 5a). We thus conclude that the two-alpha 
( 1 2  ) ETAS model exhibits the best performance in reproducing both the memory (Zhang et al., 2021) 
and asymmetry in the current study than both versions of the standard ETAS model. The asymmetry of 
EM2 also satisfies the scaling relation for the magnitude threshold similar to the real one (see Figure S5).
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Figure 4.  Cartoon illustrating how interevent times in earthquakes change with time for (a) the aftershocks B–F directly triggered by A (mainshock) and (b) 
the first generation of aftershocks B, and E  triggered by A, the second generation of aftershocks C, and D triggered by B and the spontaneous event F. Dashed 
red lines represent interevent times.

 c p A 1 2 h

EM0 0.2 0.007 1.13 6.26 1.4 1.4 –

EM1 0.2 0.007 1.13 2.91 2.0 2.0 –

EM2 0.2 0.007 1.13 3.35 2.0 1.4 52 10

Note. The parameters of EM0 are taken from Lombardi  (2015) which have been estimated by maximum likelihood estimation. For EM1, the parameters  

1 , 2  are larger than EM0, and A is smaller, to guarantee similar earthquake rate as the real catalog. We select the parameters of EM2 based on recent findings 
(Zhang et al., 2021).

Table 1 
Estimated Parameters of the Three Versions of the Epidemic-Type Aftershock Sequence Model for the Italian Catalog



Journal of Geophysical Research: Solid Earth

We further study the dependence of the interevent time increments k
i  on the magnitude increment 

( )k
i i k im m m   , to understand in more details the role of Omori law on the asymmetry. For this purpose 

we calculated the conditional probability ( 0 | )m mP m d       , where 0.2d   is the bin size of 
the magnitude increment. Figure 5b shows that this conditional probability decreases when the magnitude 
increment m  increases, for the real, EM1 and EM2 catalogs. Moreover, the conditional probability is around 
0.5 (corresponding to the asymmetry measure around zero) when m  is close to zero. Thus, the asymmetry 
measure close to zero could be due to the magnitude similarity for small lag index k, as the PDF interevent 
time increments is maximal close to zero (Figure 2a). Previous studies (Lippiello et al., 2008, 2012) have 
found that the magnitude of consecutive events is more similar than would be expected from random sam-
pling of the Gutenber-Richter distribution. It is apparent that EM1 and EM2 overestimate the conditional 
probability of the real data. Figure 5c shows the average of the magnitude increment ( )km  for 0.5i   
days (to focus on aftershocks) as a function of the lag index k. The size of aftershock is usually smaller than 
the mainshock yielding the negative values in Figure 5c. Yet, it is also clear that while the mean magnitude 
difference ( )km  is almost constant with lag k  for EM1 and EM2, it decreases for the real catalog, from 
values closer to zero for small lag index k  to values of EM1 and EM2 at large k  (Figure 5c). These results 
indicate that the magnitude similarity reported by (Lippiello et al., 2008, 2012) is absent in both models.

While the asymmetry of EM2 is similar to the asymmetry of the real catalog for 300k  , it is significantly 
higher for smaller k  (Figure 5a). The Italian catalog we used has been reported to be complete above mag-
nitude threshold 3.0 (Gasperini et al., 2013). However, due to the inefficiency of the seismic network and 
the overlapping of aftershock seismograms, an earthquake catalog could be incomplete, especially after 
mainshocks (de Arcangelis et al., 2018; Hainzl, 2016; Kagan, 2004). To investigate the effect of the incom-
pleteness of the catalogs, we generate synthetic incomplete catalogs based on the studies of Helmstetter 
et al. (2006), Seif et al. (2017), Petrillo and Lippiello (2021). The incomplete ETAS model is based on the 
conditional earthquake rate intensity function as (Petrillo & Lippiello, 2021),

  I
i

i im t m M t t, | , ,       � (4)

where all past events with it t  are considered. We define  m M t ti i| ,    1  when  i im M t t    ,  

 m M t ti i| ,    0 when  i jm M t t    ,  m M t ti i| , .    0 5 else. The magnitude thresh-
old  i iM t t  is calculated as (de Arcangelis et al., 2018; Hainzl, 2016; Kagan, 2004),

   0 10 ,i i i iM t t m log t t     � (5)
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Figure 5.  (Color online) (a) The asymmetry measure U  versus the index k for the interevent times of the synthetic Italian catalogs using EM0, 
EM1 and EM2 with magnitude threshold 3. The asymmetry of the real Italian catalog is indicated by the dotted line. (b) Conditional probability 

( 0 | 0.2)m mP m        as a function of the magnitude increment m  for the real Italian catalog and synthetic catalogs of EM1, EM2. (c) The average of 
the magnitude increment ( )km  for 0.5i   days versus the index k. The measures and their error bars are calculated based on the means and the standard 
deviations of 50 independent realizations for the models.
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where im  is the magnitude of past event i, and it t  is the time since the past event. The parameter 0.6   is 
chosen following Petrillo and Lippiello (2021), Seif et al. (2017), and Helmstetter et al. (2006) suggested the 
following parameter values 0 4.5   and 0.75  . We consider three different choices of the parameter 0 , 

0 4.5  , 4.0, and 3.5 to generate synthetic catalogs with different degree of incompleteness.

To generate the synthetic incomplete catalogs based on EM0, EM1, and EM2 (represented as EM0I, EM1I, 
and EM2I respectively), we remove an aftershock i from the synthetic complete catalogs with a probability 
given by    i i im M t t | ,  (Petrillo & Lippiello, 2021). To roughly preserve the total number of earth-
quakes to be the same as that of Figure 5a, we increased slightly the   parameter and left the other parame-
ters unchanged. With this procedure, the level of incompleteness of each synthetic catalog was 5%, 10%, and 
20% for 0 4.5  , 4.0, and 3.5, respectively for EM1I and EM2I; the percentages indicate the relative number 
of events that has been removed from the complete catalog. It is apparent from our results (see Figure 6) 
that the asymmetry weakens as the degree of incompleteness is higher. Still, for both models, the asymme-
try is overestimated for small lag index k  in comparison to the real catalog and weakens when the catalogs 
are more incomplete. Figure S6 shows similar results when using 0.6  , 1.2, and 1.8 to control the degree 
of incompleteness. We also try to control the parameter A to keep the same number of earthquakes for 
EM0I, EM1I, and EM2I and the results are shown in Figure S7.

4.  Conclusions
Here, we investigated the asymmetry behavior of interevent times (and distances) in earthquake catalogs. 
For real seismic catalogs, the asymmetry as a function of k  first increases up to a crossover lag ck  and then 
decreases rapidly. The crossover lag ck  changes with location and with the magnitude threshold, where 
the latter can be rescaled to unified value of 010bM

ck . We suggest that the Omori law is associated with the 
increase of the asymmetry below the crossover and has a decreasing influence above this crossover. This 
is probably due to the overlapping of different triggered aftershocks and the spontaneous events that lead 
to a fast decay of asymmetry above the crossover. The de-clustering between spontaneous and triggered 
earthquake events is still an open important question (Zaliapin & Ben-Zion, 2013; Zaliapin et al., 2008). The 
asymmetry results reported here and its associated crossover may help to resolve this question although this 
requires further investigation.

In the standard ETAS model whose parameters are estimated by MLE, the increase of asymmetry and 
the crossover cannot be reproduced. When the  -value is increased, a large mainshock can trigger more 
aftershocks such that there exists an increasing trend and a crossover in the standard ETAS model. This 
demonstrates that the common  -value is indeed underestimated by MLE. However, the crossover value of 
k  is larger and the asymmetry above the crossover is significantly higher and decays slower in the standard 
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Figure 6.  (Color online) The asymmetry measure U  versus the index k for the interevent times of the synthetic incomplete catalogs using EM0I, EM1I and 
EM2I with magnitude threshold 3 for (a) 0 4.5   (EM0I with 1 2 1.41   , EM1I with 1 2 2.01   , and EM2I with 1 2.01   and 2 1.40  ), (b) 0 4.0   
(EM0I with 1 2 1.42   , EM1I with 1 2 2.02   , and EM2I with 1 2.02   and 2 1.40  ) and (c) 0 3.5   (EM0I with 1 2 1.44   , EM1I with 

1 2 2.04   , and EM2I with 1 2.04   and 2 1.40  ). The asymmetry of the real Italian catalog is indicated by the dotted line.
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ETAS model with large   than the real one. The generalized ETAS model with two  -values ( 1 2  ) in 
short and long time scales exhibits similar asymmetry behavior as that of the real catalog for lags larger than 
the crossover lag ck . Yet, the asymmetry for small lag index k  is overestimated by both models (one and two 
 -value). We suggest that the short-term symmetrical behavior can be attributed to the magnitude similarity 
in real data which is missing in both models. The additional advantage of the generalized ETAS model is its 
ability to reproduce the observe memory in earthquake catalogs as reported in (Zhang et al., 2021). Thus, 
generally speaking, the asymmetry findings reported here may be used to improve earthquake forecasting 
models as the asymmetry measure can serve as an additional characteristic that a forecasting model should 
reproduce.

Data Availability Statement
The authors downloaded the Southern California catalog from the SCEDC (https://scedc.caltech.edu/re-
search-tools/alt-2011-dd-hauksson-yang-shearer.html) (Hauksson et  al.,  2012) and the Japanese Catalog 
(JUICE) from Yano et al. (2017). The Italian catalog is available on request from Gasperini et al. (2013) and 
the authors.
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