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Abstract — Many networks such as critical infrastructures exhibit a modular structure. One
approach to increase the robustness of these systems is to reinforce a fraction of the nodes so that
the reinforced nodes provide additional needed sources for themselves as well as for their nearby
neighborhood. Since reinforcing a node can be expensive, the efficiency of the decentralization
process by reinforced nodes is vital. Here we develop a model which combines both modularity
and reinforced nodes and study the robustness of the system. Using tools from percolation theory,
we derive an analytical solution for the robustness resulting from any partition of reinforced nodes;
between nodes that have links that connect between modules and nodes which have links only
within modules. We find that near the critical percolation threshold the robustness is greatly
affected by the partition. In particular, we find a partition of reinforced nodes that yields optimal

robustness and we show that the optimal partition remains constant for high average degrees.

Copyright © 2022 EPLA

Introduction. — In recent years, much attention has
been focused on the resilience and stability of networks
having a community structure [1-5]. Examples of real-
world networks with a community structure are the
brain [6-8], infrastructures [9,10] and social networks
[11-13] as well as many others [14-18].

Here we focus on a recently proposed community
model [19] where only a fraction r of nodes are capable
of having inter-links that connect them to other modules
(communities). This is a realistic model since in many
real modular networks, such as power poles in different
cities, some of the power poles connect only to poles from
their city and only specific power poles have in addition
connections to poles from other cities. The resilience of a
network can be estimated by the giant component (GC)
size. In percolation theory [20-26], the GC is defined as
the network’s largest connected component and its size is
considered as the system’s order parameter. The GC rep-
resents the network’s resilience since when nodes are not
connected to the GC they are not regarded as functioning,
as they cannot communicate or get resources from other
nodes. This condition that functioning depends on being
connected to the GC can be regarded as a centralization
feature.

Recently, a new concept of reinforced nodes has been
introduced into modeling of real-world networks [27]. The

(8) B-mail: yaelk1795@gmail.com (corresponding author)

reinforced nodes are nodes that have their own support
and can also support the cluster of nodes connected to
them. For example, in the internet network, communi-
cation satellites [28] or high-altitude platforms [29] can
serve as reinforced nodes and support important internet
ports in cases of connection failures. Thus, the concept
of reinforced nodes can be regarded as a decentralization
feature, since there are nodes that are not in the GC but
can still function properly. Considering reinforced nodes,
the new order parameter which expresses the functionality
of the system can be taken as the functional component
and not the known giant component [27]. The functional
component (FC) contains both the giant component and
smaller components which include at least one reinforced
node, see fig. 1 and the stability of the system is charac-
terized by the size of the FC. Interestingly, it has been
found [27] that in a regular, non-modular network a very
small fraction of reinforced nodes increases the robustness
significantly.

Here, we study the stability of modular systems in the
presence of reinforced nodes. In particular, we distinguish
between reinforced nodes that have links to other modules
(inter-connected nodes) and reinforced nodes that have
links only to their module (intra-connected nodes). We
find, using both theory and simulations, the functional
component size, and we address the following optimization
question: where to place the reinforced nodes in order to
optimize the robustness of the system to random failures
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Fig. 1: A schematic representation of the model with m = 2
modules. Each grey circle represents a module. The black and
red lines represent the intra- and inter-links, respectively. The
small circles are the nodes, where the inter-connected nodes are
colored in red and the reinforced nodes are marked in yellow.
The functional component contains the giant cluster and the
clusters which contain at least one reinforced (yellow) node.
Nodes and links which are not part of the functional component
are marked by dashed lines.

(i.e., to obtain the largest FC)? Specifically, the question is
how to distribute optimally the reinforced nodes between
intra-connected nodes and inter-connected nodes. An ex-
ample of a system that motivates our research is the power
grid network which is composed of electric generators. In
this example, cities can be regarded as communities and
the reinforced nodes are the electric generators. Thus, the
optimization question is how to distribute the electric gen-
erators between the inter-connected power poles that con-
nect different cities and the intra-connected power poles
that do not.

Model and theoretical approach. — Our network
model, of size N, consists of m ER modules (commu-
nities) where each module has N/m nodes. The links
within the modules are called “intra-links” and the links
which connect nodes from different modules are called
“inter-links”. In all modules, the average degree consid-
ering only the intra-links is z. The nodes which can have
inter-links are called “inter-connected nodes” and we se-
lect them randomly with probability . For each pair of
modules, A and B for instance, each inter-link is ran-
domly placed between an inter-connected node from A
and an inter-connected node from B. Thus, for placing
Minter links between any two modules, the degree distri-
bution of the inter-connected nodes —when considering
only their inter-links— is Poissonian with average inter-
degree k = mMipter/rN. Our network model includes
also a fraction p of reinforced nodes.

Next, we derive analytically the size of the FC as a func-
tion of the number of reinforced nodes, first for a random
distribution of reinforced nodes and later for a particular
distribution of them. We use tools of percolation theory
and define the generating functions considering the intra-
and inter-links as follows: Gi"(z) = X, pi*raz® and
Girter(z) = B, pinterxk for the degree distribution and
Gzintra(x) — Ekqlintraxk and Gzinte'r‘(x) — qulinte7'xk for

the excess degree distribution. In these functions, pj™™®
is the probability for a node to have k intra-links and qi”tm
is the probability for a node, reached by following a link,

to have k intra-links. pi™" and ¢i"*°" are the same as
Py and ¢ only for inter-links [30]. We define u as

the probability that an intra-link leads to a node that is
not part of the FC; v as the probability that an inter-
link leads to a node that is not part of the FC, and S as
the probability that a node is part of the FC. Thus, for
a network with a fraction of reinforced nodes, p, which is
distributed randomly, the probabilities u, v and S satisfy
the equations

1= (1=p)Gy""* (u)

m—1
1—r+r H Gé"t”(v)H ,

m—1

1= (1-p)Gire(w) [T Girer ()

Y

1 (1-p)Gir*™ (u)

m—1

1—r+r H Gé"t”(v)H ,
(1)

for the case of randomly removing a fraction 1 — p of the
nodes from the network.

In our model, the inter-links distributions are Poisso-
nian with average inter-degree r, therefore G{""(z) =
Girter (x) = e*(17%) In addition, in the limit of infinitely
large ER networks, the degree distributions for the intra-
links are Poissonian with an average degree z and thus
Girtre(z) = Gintra(z) = e=*(1=%) These equations (for
the random case) lead to a single transcendental equation
relating S, r and p,

e*ZS(T—l)(l_p)—l—l—; — T(l _ p)efzS

(m — 1)pn<e*25(r - 1)(17p)+17%77’)

r

- exp

. (2)

Before presenting the main equations of this paper, we
note that for m = 1, eq. (2) coincides with the equa-
tion, derived by Yuan et al. [27], for a network that con-
tains only a single ER module. In addition, we note that
for p = 0, eq. (2) coincides with the equation of Dong
et al. [19] which analyses a modular network without rein-
forced nodes. Thus, eq. (2) can be regarded as a general-
ization for percolation of modular networks in the presence
of reinforced nodes.

Next, we further generalize the system by splitting p to
p and p, where p, is the fraction of reinforced nodes in
the network that are inter-connected nodes and p, is the
fraction of reinforced nodes in the network that are intra-
connected nodes (i.e., nodes that do not have inter-links),
thus, p; + po = p. Using these notations we re-derive the
equations of u, v and S for any partition of the fraction of
reinforced nodes p between the intra- and inter-connected
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nodes (p, and p,, respectively), as follows:

l—u p[lGi””“(U)[lrpoHTpx)

||

. H Génte'r(,u

|
10 = p[l - <1 - %)%""“(Wﬁl Gi"t”(v)}

m—1

S = p|:1 - G%ntra(u) [1 =7 = po+ (r—pz)

m—1

o]

The generating functions for the intra- and inter-links
are the ones defined above. Therefore, a single transcen-
dental equation for the functional component relating S5,
r, pe and p, can be written as

(3)

S
-4 p) 410 = (= p)e

(mfl)pn<e*25(r71+po)+1f%77")

r

(4)

- exp

The solution of eq. (4) will give us the FC, S, for percola-
tion in the presence of p, and py reinforced nodes.

Results. — For the sake of simplicity, here we analyze a
network with m = 2 modules, while in the Supplementary
Material Supplementarymaterial.pdf (SM) we present
the results for the general case of m modules. First, we
quantify the resilience of a network where the reinforced
nodes are positioned randomly, by obtaining S for differ-
ent values of p, r and p, both by solving eq. (2) and by
numerical simulations. In fig. 2, we present S as a function
of p, and show that S increases with both the increase of
r and the increase of p. As seen, the analytical solution is
in a very good agreement with the results obtained from
the numerical simulations.

In addition, it was found that non-modular ER networks
without reinforced nodes undergo a second-order percola-
tion phase transition at p. = 1/z [31,32]. Here, it can
be seen that in the presence of inter-links and reinforced
nodes the percolation phase transition disappears and be-
comes a transition-free behaviour (fig. 2). This means that
r and p are analogous to the external field in a spin sys-
tem [19,23,27,33,34].

Next, we study various networks with different distribu-
tions of the reinforced nodes between inter-connected and
intra-connected nodes. In fig. 3, we show S at criticality
(p = pc), as a function of the fraction of reinforced nodes
which are inter-connected nodes, p./p. It can be seen that
for a given p and an average intra-degree z, S as a func-
tion of p,/p behaves differently for different values of r.
For a very small r (r = 0.01), S decreases monotonically;

" r=p=002
0.3 —r =p=0.05
r=p=01
02} —r=002,=0.05
w --r=p=0

0.17

0

0.1 0.4

0.2

Fig. 2: The size of the FC, S, as a function of p for differ-
ent r and p values where the reinforced nodes are distributed
randomly. Lines and symbols denote analytical and simula-
tion results, respectively. The dashed green line represents the
theoretical solution of a single ER network without reinforced

nodes. For these runs we chose m = 2, Ny = Ny = 105,
Minter = N1 and z = 4.
0.06
0.055 R .
0
—r =0.01
0.05 —r =0.02
r = 0.03]
0.045 : - : :
0 ():2 04 0.6 0.8 il
pz/p

Fig. 3: The size of the FC, S, as a function of p./p, at
p = p. = 1/z (as in ER), for several values of r. Lines
and symbols denote analytical and simulation results, respec-
tively. Note that for » = 0.01 it is optimal to put the rein-
forced nodes solely as intra-connected. For r = 0.03 solely as
inter-connected nodes. However, interestingly for » = 0.02 it
is optimal to partition the reinforced nodes between the intra-
and inter-connected nodes. Here, m = 2, Ny = Ny = 10,
Minter = 5-10%, 2 =3, p. = 0.3333 and p = 0.01.

for a slightly larger » (r = 0.03), S increases monotoni-
cally. However, for intermediate values of r (r = 0.02),
S behaves non-monotonically, i.e., as a concave function
with a maximum. Thus, we conclude that for very small
values the best strategy is to place the reinforced nodes as
the intra-connected nodes (p; = 0), while for larger r val-
ues it is better to place them as the inter-connected nodes
(pz = p). However, as seen in fig. 3, for intermediate r val-
ues (r = 0.02) the optimal distribution is to share prop-
erly the reinforced nodes between inter-connected nodes
and intra-connected nodes.

Next, for any given p we find its partition of p, and p,
which generates the maximal S. We define p} as the value
of p, which yields the optimal division, i.e., we calculate
S, by eq. (4) for different values of p, between 0 to p and
define p to be the p, value which maintains the maximal
S value. We calculate pZ for different values of p, r and
p (see fig. 4(a)), while for p < r, p* could reach 1. For
P > pe, we obtain pf =0 (i.e., it is better to reinforce the
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Fig. 4: The value of p}/p as a function of r and p, for m = 2,
Ni = No =10°, Mipter = 5-10%, 2 = 4. (a) p}/p for different
values of p. For p > p., the circles are blue which means p;, = 0.
(b) p3/p only for p=p. =1/z. (c) ps/p only for p = 0.5 p.

intra-nodes) for any values of r and p. On the other hand,
for p < pe, pi is determined by r and p. For any given p,
P increases with r, see for instance fig. 4(b) for p = p. or
fig. 4(c) for p = 0.5 - p.. Our results in fig. 4 demonstrate
that one can distribute the reinforced nodes between the
intra- and inter-nodes such that the robustness is optimal.
In the SM we show that the differences in the size of the
FC between different divisions of the reinforced nodes are
mostly significant for p < p. values. Thus, when demon-
strating the optimization question of where to place the
reinforced nodes, we focus on the p < p. regime.

In fig. 5, we show that for both p = p. and p =0.9 - p,
when we increase the value of the average intra-degree z,
ps approaches a constant value. Note also that for each
value of z we have a different value of p,, since p. = 1/z.
In fig. 5(a) and (b) we set Minier = 5+ 10* and Miper =
5 - 103 respectively. It can be seen that for these cases
the optimal division of the reinforced nodes is different.
For small z values for instance, when there are more inter-
links the optimal reinforcement is p = 0 (i.e., it is futile
to reinforce the inter-connected nodes), while for fewer
inter-links, it is optimal to reinforce a fraction of the inter-
connected nodes, i.e., pi > 0. From this we conclude that
the less linked the interconnected nodes are, the higher
fraction of them should be reinforced.

Summary. — In summary, we have developed a general
percolation framework for studying a new realistic net-
work model of m ER modules. We have derived the effect
of reinforced nodes on the size of the functional compo-
nent (FC) of our modular network, i.e., the effect of such
a decentralization approach on the network’s robustness.

L T A S —————
—r = 0.01
—r =0.02
------------------ r=0.03
—r =0.04
60 80 100
z
(&) Minter =5- 104
L S
- I
—r = 0.01}
e —r =0.02
£8 05, ..---0cccccooooooooooo r = 0.03]
! —r =0.04
0 20 40 60 80 100
Z

(b) Minter =3- 103

Fig. 5: The fraction p}/p as a function of z for different values
of 7. The dashed lines are for p = 0.9 - p. while the solid lines
are for p = p.. Note that the optimal ratio of the reinforced
nodes approaches a constant for high intra-degrees. Here, m =
2, N1 = N2 = 10°, p = 0.01, (a) Minter = 5-10* and (b)
Minter =5+ 10°.

Previously, the concept of reinforced nodes has been stud-
ied only for a non-modular (single community) network
and when placing the reinforced nodes at random while
here we addressed for the first time an optimization prob-
lem of modular networks and non-random locations. We
find the fraction of reinforced nodes within the inter-
connected nodes which provides the largest FC, pZ, by
simulations and theory. We also showed that for a broad
range of parameters the value of p} is a non-trivial inter-
mediate value (especially near criticality p.) and becomes
constant for high average intra-degrees. These results may
have significant practical applications. For example, they
can be used to determine the optimal way to distribute the
power generators, in a given electricity infrastructure net-
work (which usually has a modular structure). We propose
that our novel framework about the effect of reinforced
nodes on the robustness of modules connected randomly
will be extended in the future to study the robustness of
spatial networks of modules, where the modules are em-
bedded in space and only nearby modules are capable of
having links between them [35].
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