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Abstract
Although scaling relations of power law forms have been revealed in awide variety of complex systems,
the origin of scaling relations in real systems remainsmostly unsolved. Based on a long tradition in
physics, we here explore the phase space dynamics of business companies, whose differentmeasures of
size have been found to exhibitmultiple scaling relations. Using a large scale dataset of Japanese
companies covering over twomillion companies for over two decades (1994–2015), we compile the
data of threemeasures of size, namely, annual sales, number of employee and number of trading
partners. Tracking the historical time evolution of companies, wefirst show that there exists a stable
region that attractsmost of the data points in the long time scale, although the company dynamics in
the three-dimensional phase space looks random in a shorter time scale.We then elaborate on
‘evolving flowdiagrams’ of the averagedmotion in the 3D space. Remarkably, theflowdiagrams
indicate that a 3D curvewhich represents the scaling relations between the three sizemeasures can be
regarded as an approximate attractor of the averagedflows. The results could serve for bettermodeling
and understanding of companies dynamics and ourmethod can be applied to other dynamics such as
social and biological phenomena.

1. Introduction

Scaling relations and scaling lawswith non-trivial exponents have been central issues in physics of complex
phenomena. Since the non-trivial scaling relation around a critical point was first discovered over a century ago
[1], the scaling concept had guided the exploration into critical phenomena [2–7]. It was subsequently applied to
softmatter physics and led to the discovery of universal features of polymers [8, 9] and colloidal aggregates [10].
Meanwhile, scaling relations had also been found for complex systems such as biodiversity in ecological
communities [11, 12], animal bodies and cells [13–16], human cities [17–19] and business companies [20–25].
Recent physical andmathematical studies have attempted to explain scaling relations in such systems and
provided plausible theories for animal bodies or cells [26, 27] and for human cities [28, 29]. All these studies have
employed statisticalmechanical approach, wheremacroscopic laws and patterns are explained by assuming
approximate laws and dynamics atmore fundamental levels.

However, there remains a significant challenge in statistical physics approach to complex phenomena,
because the dynamics at fundamental levels has not been sufficiently established for biological, social or
economic systems.We assume that this lack of established laws atmicroscopic levels has led to a plethora of
models for such systems. On business companies, for example,models have highlighted severalmechanisms or
factors as diverse as hierarchical organization [30], stochasticity in competition [31, 32],financial [33] or hiring/
firing [34] behaviors, preferential attachment of company units [35], social networks [36] andmultiple
independent components in companies [35, 37–40]. Although they often agree with the data at the level of
distributions calculated from a snapshot of the systems, thesemodels lack validation by direct observation at
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microscopic levels, or fail when theirmicroscopic dynamics is explored [41]. The situation is similar in
biodiversity research: two classes ofmodels with radically different assumptions on dynamics atmicroscopic
levels both can explain the rank-size distribution of abundance [42, 43] and spatial distributions [44, 45] of
natural species.

During the development of statisticalmechanics, there emerged an alternative approach, inwhich one
explores laws and dynamics only in terms of the ‘macroscopic’ variables that allow direct observation.More
specifically, the evolution of complex systems in the phase space of ‘macroscopic’ variables is studied. This
approach dates back at least to Lorenz [46, 47], who is also famous for the pioneeringwork [48] in chaos theory.
He proposed the analoguemethod: trajectories of systemswith unknown dynamics could be predicted by
collecting the data from the past with configurations similar to the present. By applying thismethod to theworld
trade, Cristelli et al [49] recently demonstrated that countries and territories were in either turbulent or laminar
zones in the phase space of their GDP and ‘fitness’measure in the trading network. This suggests that the
methodology in this line could be vital to studies of complex phenomena.We consider this approach to be
complementary to the statisticalmechanical approach. Although observed scaling properties in complex
systemsmay be explained by the statistical physicsmodels enumerated above, explanation of such properties by
the dynamics atmacroscopic levels would be valuable: the characterized dynamics could be used to justify or
falsify the possible theories on dynamics atmicroscopic levels. Nevertheless, such an approach to the scaling
relations has not been tested yet to the best of our knowledge.

Here we empirically observe how companies evolve into the previously known scaling relations in a three-
dimensional phase space. Instead of the statisticalmechanical approach, we introduce themacro-variables
approach. To this aim, we utilize a comprehensive dataset of approximately 2million Japanese companies
accumulated overmore than 20 years since 1994.We compile the data of threemeasures of size from the dataset:
(i)monetary size estimated typically by the annual sales, (ii) labor sizemeasured by the number of employees,
and (iii) the size of transactional activity which can be characterized by the number of companies withwhich the
focal company has a direct trading relationship. Thesemeasures of size were previously studied in the context of
scaling relationswith scale-invariantfluctuations [24]. Based on this huge dataset, several pieces of evidence are
presentedwhich indicate that companies tend to evolve into a single three-dimensional ‘scaling curve’, onwhich
companies are ‘stable’ in the sense that their average velocity is close to zero.

The rest of the paper is organized as follows. First, we briefly discuss our compilation of the data. Second, we
show that the previously reportedmultiple two-dimensional scaling relations can be represented by a curve in
the three-dimensional phase space.We then inspect the time evolution of companies testing and disproving the
hypothesis that it is an anisotropic randomwalkwith constant diffusion coefficients.We further derive evolving
flowdiagrams from the data to demonstrate that companiesmove towards the scaling curve on average. Lastly,
we discuss the implications of our results and future research directions.

2.Data compilation

Wecompile the data utilized here from an exhaustive dataset by amajor credit reporter that summarizes the
description of Japanese companies in the period of 1994–2015 (COSMOS 2 byTeikokuDatabank, Ltd.),
available to us in January, 2017. The dataset contains total of 2.415×106 companies (1.263×106 in yearly
average).Wefiltered out a small fraction offinancial companies and governmental organizations whose sales are
defined very differently fromother ordinary companies.We also removed a very small number of sales data
whichwere recordedmore than 8 years after the publication of the financial statement. Additionally, we
excluded the sales data where the end offiscal year changes, because some of them are not likely to be annual
sales. Therefore, ourfinal dataset, which consists of totally 2.395×106 companies (1.247×106 in yearly
average), primarily concernsmanufacturing, construction orwholesale companies. Here, we have the data of
annual sales, s, and the number of employees,ℓ.

We also construct a trading network for every year from the list of trading relationships between companies,
to obtain the degree k (i.e. the number of direct trading partners) of every company. The network includes
3.051×106 trading links per year on average. This enables us to consider the companies’ size in terms of
transactional activity in the network of trading partnership [24].We note that data of the trading network is
almostmonotonically growingwith years, from1.826×106 trading links in 1994 to 3.873×106 in 2015.

3. Three-dimensional scaling curve

Wefirst present a unified picture for the previously reported triple scaling relations between pairs of variables in
the three-dimensional phase space of (k,ℓ, s).Watanabe et al [24] demonstrated the triple scaling relations
between the number of trading partners, k, the number of employees,ℓ, and the annual sales, s, formiddle- and
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large-sized companies: k s k,1.0 1.3µ µℓ and s 1.3µ ℓ . These relations were defined in terms of conditional
medians. For example, the equation, s 1.3µ ℓ , means that themedian s for companies withℓ employees
increases asℓ1.3 whenℓ is increased. Furthermore, fluctuations around the conditionalmedianswere found to
be scale-invariant: the probability of having, for example, double or half the conditionalmedian sales is
independent of k andℓ. In other words, the distributions ofℓ/k1.0, s/k1.3 and s/ℓ1.3 are independent of the size
of companies, and these variables are, in this sense, intensive. Such scaling relations fit our dataset well for all 22
years with slightly different scaling exponents of 1.2 for k–s andℓ–s scaling (figure 1). Thismeans that when the
three-dimensional distribution of companies is projected to a two-dimensional plane by neglecting one of the
variables, companies are densely located on a line defined by the scaling relations. This highly suggests that the
three-dimensional distribution of companies can be represented by a single curve in the three-dimensional
phase space (red line infigure 1), near which the data points are densely located.We hereafter refer to this
hypothetical curve as the ‘scaling curve’.

While the scaling curve is linear in logarithmic scales formiddle- and large-sized companies, this does not
hold for small-sized companies. Indeed, in the two-dimensional plots of conditional quantiles (figure 1), the
scaling exponents are evidently different at the zone of small-sized companies and that ofmiddle- or large-sized
ones. Therefore, we hereafter refer to these two different regimes of scaling as the small-company and large-
company regimes, considering them separately.

4. Alignment of companies towards a curve

Herewefirst visually inspect the data to obtain an intuitive view of the three-dimensional dynamics of
companies. As in the previous section, we regard a company as a point in the three-dimensional space of the log-
transformedmeasures of size (K, L, S) ≡ (log k, logℓ and log s). Historical changes of sizemeasures of
companies, initially near a point in the space, are demonstrated infigure 2.Historical changes of total of 6792
companies near (k,ℓ, s)=(10, 10, 500) are tracked to show the representative evolution in the phase space (see
figure 2). It is evident from the figure that companies are not evolving isotropically in this 3D representation.
Rather, there seems to exist a curve alongwhich companies aremost likely tomove.

Applying principal component analysis (PCA) on the data can further reveal whether the evolving dynamics
of companies can bemodeled as an anisotropic randomwalkwith constant diffusion coefficients. If we assume

Figure 1.Representation of company states by threemacro-variables, namely, the number of trading partners (k), the number of
employees (ℓ) and annual sales (s). The bivariate scaling relations between k,ℓ and s can be interpreted as the projection of a single
three-dimensional ‘scaling’ curve (red solid curve). Around the central cube, bivariate distributions are plotted from the dataset as in
Watanabe et al [24], with , , , + ´ ◊ and ▿ respectively indicating 5-, 25-, 50-, 75- and 95-percentile of the distribution of points
along the vertical axis conditional on the variable represented by the horizontal axis. Percentiles other than themedian (the 50-
percentile) are vertically shifted for the purpose of illustration. The red error bar in the top-right panel represents the typical size of
conditional interquartile range (the range between the 25- and 75-percentiles) in all the three panels. The dashed lines indicate the
slope, in logarithmic scales, of 1.0 for the k–ℓ relationship, 1.2 for the k–s relationship and 1.2 for theℓ–s relationship.
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the dynamics as direction-dependent yet time- or location-independent diffusion froma specific point, two
consequences follow. First, the characteristic direction alongwhich the points aremostwidely distributed does
not changewith time. Second, the three-dimensional shape of point distributions at different times are similar.
Both conclusions can be conveniently testedwith PCA. Indeed, the first principal component (PC1) resulting
fromPCA specifies the characteristic direction alongwhich the data aremost widely distributed, whereas the
second principal component (PC2) indicates the second characteristic direction of the distribution after it is

Figure 2.Typical time evolution of companies in the three-dimensional space of the number of trading partners (k), the number of
employees (ℓ) and annual sales (s). 6792 companies that are initially located near a point (k,ℓ, s)≈(10, 10, 500) in the 1994 data are
tracked and all the companies surviving in the following years with complete data are plottedwith trajectories from locations in the
previous year of presence. Note that the resulting distributions of companies in years after 1999 are clearly anisotropic. Red dashed
line in panel (f) indicates a line parallel to the first principal component (PC1) vector in 2015 that passes through themean of the point
distribution.
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projected into the plane perpendicular to PC1. The procedure is repeated until all the variances are accounted.
Note that the principal components (PCs) are perpendicular to each other. Stability of characteristic directions
can thus be evaluated by the stability of PCs, while similarity of distributions can also be tested by the stability of
ratios between the variances along the PCs.

To further characterize the apparent anisotropicmoves, we apply PCAon two different groups of companies
starting in 1994 fromdifferent points in the three-dimensional space, xk s, , 10, 10, 5001» =ℓ( ) ( ) and

xk s, , 3, 3, 1002» =ℓ( ) ( ).We let ui t,
1( ) and ui t,

2( ) denote the unit PCi vectors in the year t for companies starting
from x1 and x2, respectively. Two results emerge from the analysis. First, the PCunit vectors turn to be
remarkably stable across years (see figure 3).Wemeasure the differences between the principal component
vectors in different years by the angles between them, u u u u, arccosi t i t i t i t, , , ,q º¢ ¢( ) · . Overall, the differences
from the final year, u u,i t i,1994 ,2015q +D( ), are very small (θ=π/2) and become almost negligible 5 years after
the initial year, as seen infigures 3(a) and (b). Therefore, we conclude that the characteristic directions do not
change over time. Second, however, there is a clear sign of deviation from a randomwalk. The variance along
PC2 and PC3 almost reaches a plateau 10 years after the initial year, while variance along PC1 increases linearly
(figures 3(c) and (d)), which is enough to reject the randomwalk hypothesis. This indicates that fluctuations
along PC1 of the distributionmay bemodeled as a randomwalk, butfluctuations perpendicular to PC1 reach a
steady state. It thus suggests that there exists a Langevin-like ‘field’ that drives back the randomly deviating
companies into a line parallel to PC1, as seen in figure 2(f)with the red dashed central line.

5. Evolvingflowdiagrams

Considering the results in the previous section, it is natural to hypothesize that companies that are distant from
the scaling curve have the tendency offlow towards this curve. To support this hypothesis, we elaborate onwhat
we refer to as the ‘evolving flowdiagrams’ by plotting the estimated vector field of the annual growth in the three

Figure 3.Results of the principal component analysis for companies of fixed initial sizes in 1994. Panels (a) and (b) represent the
evolution of principal component vectors,measured by the angle, θ, between the two principal component (PC) vectors, ui t,1994+D
(the ith principal component (PCi) vector at the year t1994 + D ) and ui,2015 (PCi vector at the year 2015). The angle θ is relatively
small compared toπ/2 in the last 15 years. In panels (c) and (d), themean squared variation (variance) along the respective principal
component is plotted against the year. PC1 variance is increasing linearly with time, while the second and third ones (PC2 and PC3)
almost reach a plateau 10 years after the initial year. This suggests that companies do diffuse in the PC1directionwhereas the diffusion
in the PC2 and PC3directions is constrained. Panels represent the results for 6792 companies of the initial size (k,ℓ, s)≈(10, 10, 500)
(panels (a) and (c)) and 26509 companies of the initial size (k,ℓ, s)≈(3, 3, 100) (panels (b) and (d)).
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dimensional space of k,ℓ and s. This is inspired by previous work on the prediction of countries’ economic
growth [49], where the authors advocate the applicability of analoguemethods [46, 47] to economic systems.

Wefirst estimate the average growth rates of sizemeasures, k,ℓ and s, at a specific point (k0,ℓ0, s0) in the
three-dimensional phase space.We do this by collecting the data sufficiently near the point and computing the
arithmeticmean of log-transformed growth rates. Let us define d k s, ,c

log
0 0 0ℓ( ) as the Euclidean distance of

company c from afixed point (k0,ℓ0, s0) in the previous year t−1 in the logarithmically scaled space:

d d d d ,c
k

c c
slog log 2 log 2 log 2= + +( ) ( ) ( )ℓ( ) ( ) ( )

where

d k t k

d t

d s t s
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We sample the companies within the Euclidean radius dlog<log[101/8] and eventually get theNadaraya–
Watson estimatewith the kernel function of rectangular pulse [50]. Nevertheless, when the resulting sample size
is less than 200, the threshold of dlog is enlarged until the sample number reaches or exceeds 200 to suppress the
variability of estimates, therefore employing the 200-nearest neighbormethod. Thus, the final estimation of
mean velocityV k s, ,
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V k s

C d V

C d

C r V
, ,

200

otherwise

,

t c C d c t

t

t c C r c t

1 thr
1

,

1 thr

1 200
1

,

t

t

1 thr

1 200

~ 
å

å
=

#

#

#

-
-

Î

-

-
-

Î

-

-

⎧

⎨
⎪⎪

⎩
⎪⎪

ℓ( )

( ( ))

( ( ( )) )

( ( ))

( )

( )

( )

where

V

k t k t

t t

s t s t

C d k s c d k s d

r r C r N

d

log 1

log 1

log 1

,

; , , , , ,

min ,

log 10 ,

c t

c c

c c

c c

t c

N t

,

log

1

thr
1 8


 

=
-
-
-

=
= Î #
=

-

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ℓ ℓ

ℓ ℓ

[ ( ) ( )]
[ ( ) ( )]
[ ( ) ( )]

( ) { ∣ ( ) }
{ ∣ ( ( )) }
[ ]

and#(S) represents the number of elements in a set S. Taking the logarithmof growth rates, we can limit their
possible ranges of several orders ofmagnitudewithin those expected from exponential distributions. Thismakes
the arithmeticmean amore robust estimator of the typical value.Note that the arithmeticmean of log-
transformed growth rates is equal to the logarithmof geometricmean of growth rates.

We then render two-dimensional diagrams that represent slices of the three-dimensional space, exploiting
themethod developed in the field of computer graphics [51]. In short, themethod follows two steps: (i) placing
some points randomly on the plane and drawing streamlines that pass through them, and (ii) repeatedly
comparing the original imagewith a randomlymodified one and selecting the one inwhich the streamlines are
placedmore homogeneously. Randommodifications include inserting, deleting, lengthening, shortening and
parallelmoving of a streamline.

We show some slices of the vector space infigure 4. Two slices of constant sales (s=102.0 and s=103.5

million yen, respectively) are shown in thefigure. The streamlineswith arrows represent the averagemovement
of companies parallel to the slice, while background colors indicate the average floworthogonal to the slicing
plane. For example, one can see the average time evolution of a company of the size (k,ℓ, s)=(10, 100, 100)
fromfigure 4. The point (k,ℓ)=(10, 100) can be specified on the slice of s=100 (see the yellowdot in
figure 4(a)). The red background around the dot indicates that the company grew in sales by a factor of over 1.15
on average in a year, while the employees was declining rapidly by a factor of 1.6 and almost no change is
expected for the number of trading partners. Note that the data in all years of 1994–2015 are joined together to
have themaximal sample size.

Clearest infigure 4 is themeanflows inℓ (the number of employees) and k (the number of trading partners)
towards a point of stability. It can be seen infigure 4 that the point of stability is located near (k,ℓ)=(2, 3) in the
slice of s=102.0, and near (k,ℓ)=(100, 15) in the slice of s=103.5, respectively (see the red dots in both
panels). Deviations from the point are compensated by themoving parallel to the slice, i.e.their simultaneous
changes in the trading (k) and employment (ℓ). Therefore, this pointmarks the steady state of the companies
having a constant sale.
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It is also seen from comparison offigures 4(a) and (b) that the point of stability shifts in the direction of a
large number of trading partners (k) and employees (ℓ) as thefixed value of sale (s) is set to be higher. Thismeans
that the points of stability for slices of constant sales constitute a curve in the three-dimensional space, which
changes from low values of k,ℓ and s to higher values.We hereafter refer to this curve defined from themean
flows as the stability curve.

We further notice infigure 4 that those points on the stability curve can be characterized by relatively very
slow absolute changes in sales: average flows around the points of stability are close to zero in comparison to
other zones of the space. Therefore, the stability curve can be regarded as an attractor of themeanflowof
companies in the phase space, since the average flows on the curve is almost zero in any direction.

Although visually impressing, the results should be interpretedwith some care. First, the estimates aremost
accurate in zones of small sizes (bottom-left infigure 4) and less accurate in other zones, because of poor
statistics due to less numbers of sample companies. In particular, the number of samples is fewest at the edges of
bottom-right and top-left, where very few companies exist.When the growth rates are estimated for such points
without any company around, these estimates are based on data points on the nearest edge of the distribution.
Furthermore, the estimates are biasedwhen there is a gradient of data density: the center of the distribution
then hasmoreweight than peripheral regions, so that the effects ofmoving outward from the center of the

Figure 4.Evolvingflowdiagrams illustrating the estimated average log-transformed growthper year in slices of the phase space. The
phase space is sliced by twoplanes of annual sales s equal to (a) 102.0 or (b) 103.5million yen.Thedirection andwidth of the curves in
the slices indicate the velocity vector of averageflowwithin the slicing plane. The estimated averageflowperpendicular to the plane is
illustratedwithbackground colors, red, grayor blue representingplus, zero orminus sales growth, respectively. The yellowdot located
at (k,ℓ, s)=(10, 100, 100) exemplifies a pointwith a fastflow,while the red dots located at (k,ℓ, s)=(2, 3, 100) in panel (a) and at
(k,ℓ, s)=(100, 15, 316) inpanel (b) represent the stablepoint. Bothplots are obtainedbased on the total aggregationof data of all years.
Note that ourmethod interpolates the average rates so that one canhave estimation for points aroundwhich few companies actually
exist. A stable point can be seen for both slices, while the stable point is shifted in the high-k and high-ℓdirectionwith increasing sales.

7

New J. Phys. 21 (2019) 043038 YKobayashi et al



distributionongrowth rate are alwaysunderestimated. Finally, the continuous increase of trading link data (almost
two-fold in the twodecades) is likely to addpositive bias in the estimate of kflow (the change innumber of trading
partners), turning the directionof averageflows rightward infigure 4.Thismight be the cause offlows in top-right of
figure 4(b) that never reach the stability points but continuously go in the right.However, ourmain conclusion
remains unaffected, as theflows towards the steady state cannot be explainedmerelyby these biases and errors.

Considering the results presented infigures 3 and 4 together, it is natural to hypothesize that the stability
curve is almost identical to the scaling curve as shown infigure 2(f).We support this by plotting the evolving flow
diagrams for sloped slices parallel to the PC vectors (figure 5(a)). PCA is here newly applied to all the data joined
together from all years, yielding the PC vectors,

u u u u a0.30 0.61 0.74 , 1K L S1
all = + +( ) ( )

u u u u b0.88 0.48 0.03 , 1K L S2
all = - + -( ) ( )

u u u u c0.37 0.64 0.68 , 1K L S3
all = - - +( ) ( )

Figure 5.Evolving flowdiagrams for sloped slices defined by principal components (PC). Flow diagrams for (a) the PC2–PC3 plane
and (b) the PC1–PC3 plane that pass through the average point of the distribution (red point). Red solid line represents the PC1 axis
that passes through the average point in panel (a). Companies flow towards PC1 line (red solid line) in the PC1–PC3 plane and
towards the central red point (i.e. themean of the distribution) in the PC2–PC3 plane. All the variables (k,ℓ and s) are greater than a
unit inside the zonesmarked bywhite dashed lines. PC1, PC2 and PC3 are respectively k s0.30 ln 0.61 ln 0.74 ln+ +ℓ( ),

k s0.88 ln 0.48 ln 0.03 ln- + +ℓ( ) and k s0.37 ln 0.61 ln 0.68 ln- - +ℓ( )while in the diagrams they are normalizedwith the
mean corresponding to (k,ℓ, s)=(3.33, 7.30, 183). (c)Conceptual illustration of the slices in the three-dimensional space, where the
red point in the center represent themean of distribution. PC lines are perpendicularly crossing to each other at the red point. Note
that some zones of planes are out of the data range. For example, sales are less than a unit (inmillion yen) at the bottom right edge on
the PC1–PC3 plane, while in the actual data every sale of a company less than a unit is round up to be recorded as a unit.
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where u u,K L and uS are the unit vectors in the direction of log k, logℓ and log s axes, respectively. The differences
between these PC vectors and those calculated above for the two groups of companies are small
( u u, 0.15i i

all
,2015q <( ) ). Note that PC1, i.e.u x1

all · , where x k s, , Tº ℓ( ) , indicates the overall size of the
company, while PC2, i.e.u x2

all · , indicates the ratio of the employee number to the number of trading partners.
PC3, i.e.u x3

all · , can be regarded as the sales scaled against k (the number of trading partners) andℓ (the
number of employees), because PC3 scales k s s klog log0.37 0.64 0.68 0.55 0.94 0.68=- -ℓ ℓ[ ] [( ) ]. Note that the PC1
value is extensive in the sense that it scales with the company size while the PC2 and PC3 values are intensive just
asℓ/k1.0, s/k1.3 and s/ℓ1.3 discussed in section 3.

As seen in the diagram, it supports our hypothesis that companies are on average flowing towards the PC1
line that pass through themean of the distribution (marked by the red dot infigures 5(a) and (b)). On the other
hand, companies are almost ‘neutrally’ stable on the PC1 line: after a small perturbation, a company on the line
tends back towards the line, but a displacement parallel to the PC1 line would not be recovered, due to the fact
that the flow along the PC1 line is close to zero near the line (see figure 5(b)).

Somenon-ideal dynamics of the system is evident infigure 5. First, onewould notice the smallflowon thePC1
line in the declining direction.This is consistentwith the previous studies that have reported negative sales growth
of companies on average [52], considering that a large proportionof the companies are located near thePC1 line by
definition. Second, the blue-colored area infigure 5(a) is far larger than the red-colored area,meaning that PC2 is
generally highly likely to decrease. Since thePC2 value (i.e.−0.88 ln k+0.48 lnℓ−0.03 ln s) is determined
mainly by thenumber of trading partners (k), this suggests that thenumber of trading partners (k) of a company
tends to increase constantly. This is particularlywell shown infigure 4(b): high-k andhigh-ℓ companies seem to
tend towardshigher-k states rather than the stable state.We attribute the increase of k to the constantly growing
amount of data itself, since adding new companies to thedatabasenecessarily leads to increasing the trading
relations previously not recognized in the data.Nevertheless, thePC1 line remains an approximate attractor in the
dynamical systemof the averagedmotion, in the sense that companiesflowprimarily towards the line and the
speedofflow is considerably lower on the line.We conclude that thePC1 line,whichwe consider to be a part of the
scaling curve, approximately agreeswellwith the stability curve in the small-company regime.Note thatweobtain
similar results for the large-company regime as presented in appendix.

6.Dissipation rates

Apart from the average flow that we described above, we can also regard the difference in the disappearance or
dissipation rate as the origin of a stable distribution of companies in the phase space. Recall that a randomwalk
process has no steady state. In order for a stochastic process to have a steady state, diffusion has to be
compensated by some countereffects. In our case, we suppose that if companies disappearmore rapidly at the
zones far from the scaling curve compared to the zones near it, this difference in the dissipation rate could keep
the distribution near the scaling curve against the diffusive effects that lead the system to non-stationary
dynamics.

In order to explore our hypothesis, we employ amethod slightlymodified from the one in the previous
section. First, a company is determined to be nonexistent in a year t if there is no record for the company’s
existence either in the year t or in the following year t+1.We then compute the estimated dissipation rate at
each point, k s, ,m ℓ( ), from the data of all years as follows:
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where δc,t is 1 (if the company c does not exist in year t) or 0 (otherwise) and dthr is here set to be log[10
1/4].

We plot two slices of the scalar field of dissipation rates, k s, ,m ℓ( ), into respective heatmaps (figure 6). The
slices are set in the sameway as infigure 5. Figure 6(a) clearly shows that m is higher at zones far from the PC1 line
compared to zones near the line. It is also evident that the rate of dissipation is lower at the zones of larger PC1,
which is in linewith an earlier report that such a rate decreases with company size [53]. The difference in
dissipation rate in the PC3 direction also conforms to the expectation infigure 6(b), although m is almost
monotonically increasingwith the PC2 value against our hypothesis. Note that a low value of PC2
( klog 0.88 0.48» ℓ[ ]) indicates that the company hasmore trading partners compared to the average one of those
with the same number of employees, therefore suggesting superiority, rather than inferiority, of the company.
Note that in similar plots for the large-company regime, however, the tendency of higher dissipation rate at
zones far from the scaling curve ismore evident (appendix). In conclusion, the difference in the dissipation also
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plays a role in stabilizing the distribution of companies by keeping themnear the scaling curve against random
diffusion.

7.Discussion and conclusion

Wehave analyzed the dynamics of companies, highlighting the general tendency of companies towards a steady
state. Aswe have seen infigure 5, there exist tendencies in the time evolution leading companies to a ‘stability
curve’ in the three-dimensional space. For small-size companies, the curve is parallel to the PC1 vector of the
company distribution (figure 5(a)). Note that the PC1 vector does not agree with the previously reported scaling
exponents, especially with regard to the number of trading partners, k. As the companies are primarily scattered
along thefirst principal component (PC1) direction by definition, equation (1a) indicates that lnℓ increases by
0.61 on averagewhen ln k increases by 0.30, thus suggesting the square relationship between k andℓ (ℓ∝ k2).
On the other hand, the relation between k andℓ has been found to be almost linear (ℓ∝k) in the previous study
[24]. This is probably because of the different data that has been analyzed. In our analysis, the vastmajority of
companies are the small companies, while the small-size companies have been excluded from the analysis in the
previous study. Indeed, when companies of k 10⪅ that belong to the small-company regime are excluded (see
appendix), the PCA recovers the previously reported scaling relations (see figure A1) and the stability curve is
again parallel to the PC1 vector of the truncated company distribution (see figure A2). Therefore, we conclude
that the stability curve can be approximated by a single scaling curve (composed of two functions for different
regimes) over thewhole range.

We are inclined to interpret our results offlows towards the scaling curve as an emergent property. If the
scaling relations and the bounded dynamics were the result of a rigid regulation, there could be a clear-cut
threshold over which companies are not allowed to exist. On the contrary, the distribution of companies in the
three-dimensional space is rather smooth, as revealed in the previous study [24].Moreover, the dissipation rate
is higher at zones far from the scaling curve compared to zones near the curve. This suggests that there are
difficulties in staying at the zones distant from the scaling curve, and that themoves towards the scaling curve are
adaptive and spontaneous.

It remains an open questionwhat are the origins of the two different regimes of scaling. One possible factor is
the discretized values of k andℓ thatmight strongly affect an analysis particularly when they are less than 10.
Nevertheless, different scaling exponentsmight also be relevant to differences in actual dynamics of companies.
For example, the number of companies having 5–10 trading partners aremore than expected from the power-
law tail of the distribution in our dataset (as seen in [54]). Thismight suggest that there is a ‘barrier’ that prevents
those in the small-company regime from entering the large-company regime. Existence of such a barrier would
be suggestive of differentmechanisms actually at work in different regimes.

While all kinds of companies are collectively used in our current analysis,finer-grained analyses are possible
in the frameworkwe have presented here. For example, the dynamical similarity between companies of different
industrial sectors can be evaluated. Since survival rates of companies are known to be surprisingly similar across
different sectors [55], it seems reasonable to hypothesize that the dynamics in the phase space is also similar.

Figure 6.Estimated dissipation or disappearance rates for companies on sloped slices defined by principal components (PC). Blue,
gray and red background colors represent a low,mediumor high dissipation rate, respectively. Each panel represents the same slices as
in figure 5: (a) the PC1–PC3 plane and (b) the PC2–PC3 plane. Companies aremore likely to disappear when their PC3 value is far
from the central red point (i.e. themean of the distribution) in the PC1–PC2 plane. This is also seen in the PC2–PC3 plane. All the
variables (k,ℓ and s) are greater than a unit inside the zonesmarked bywhite dashed lines.
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Another possible direction is to study the dynamics for companies of different ages. Despitemuch consideration
devoted to the topic, empirical research onwhether companies behave differently depending on their age is still
lacking.

It is important to note that there are always temporalfluctuations in companies’ sizemeasures [20, 30, 35],
which are presumably a dominant factor of company dynamics (diffusion) especially around the stability curve.
We speculate that the diffusion effects of the stochastic growth rates are in equilibriumwith the average flow
discussed above. Thismight lead to the universal fat-tailed distribution of companies around the scaling
relations [24] through a process similar to a randommultiplicative process [56]. However, the connection
between the common scaling function and the stochastic dynamics is yet to be established.

Our resultsmight support the claim [49] that the analoguemethod is beneficial in addressing the problemof
dynamics which cannot be solved by the standard regression analysis, ormore generally, by the statistical
analysis of a snapshot of a system. As shown infigure 5(b), low-PC3 companies subsequently tend to increase
their PC1 value, while high-PC3 (and high-PC2) ones are likely to decrease it slightly. Therefore, we could expect
that the ‘natural’ size of companies would be larger for lowPC3 compared to high PC3, even if their PC1 values
are the same. This point cannot be revealed only by the PCA.

Finding the novel stylized fact of agreement between the scaling and stability curves, we believe that our
results could be also beneficial to futuremodeling and theoretical considerations. Although researchers have
formulated numerousmodels [30–41], we are not aware of anywork that could be used to explain the agreement
between the scaling and stability curves demonstrated here. Thus, we suggest that future theoretical studies
should incorporate this phenomenologicalmulti-variate evolution of companies.

We expect that similar results would emergewhen applying ourmethod to a different set of companies in
other areas or countries. Interestingly, different scaling exponents for the s-ℓ relation have been found in
datasets fromdifferent countries and areas.While sales (s) increase superlinearly with employees (ℓ) in the
Japanese data, the relation is almost linear in the dataset from theUnited States of America and sublinear in the
one from the People’s Republic of China [25]. It would be a promising research direction to carry out
comparative studies across different countries and areas. Furthermore, analogous resultsmight emergewhen
one examine diverse natural, social or economic systems such as city growth [57] or the species-area relationship
in ecological systems [12].
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Appendix. Scaling and stability curve in large-company regime

A.1. PCAwith unbiased thresholding
Herewediscuss themethod to obtain the threshold that discriminates between the large- and small-company
regimes, so thatwe canfilter out thedata points in the small-company regime.Wefirst define a property of data
filtering (i.e. self-consistency) in relation to theprincipal component vectors for thefiltered data.We then present
an algorithm to search forfiltering criteria that have theproperty. This algorithmgives a series of possible threshold
planes as a function of a scalar parameter of company size. In ideal cases, one canfinda single ‘true’ thresholdof
company size, abovewhich the candidate thresholdplanes are all placed inparallel to each other.

We define a ‘self-consistency’ for a datafiltering,

a x 1,
i

N

i i
1

S
=

to be afiltering such that the PC1 vector for the filtered data is perpendicular to the line or (hyper-)plane,

a x 1. A.1
i

N

i i
1

S =
=

( )
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Wehereafter refer to the threshold plane (A.1) of a self-consistent criterion as a self-consistent threshold plane.
The definition is inspired by the notion of self-consistency for a principal curve alongwhich the data are aligned
[58, 59]. In our data, the principal curve presumably amounts to the scaling curve (red bold curve infigure 1).

Self-consistent threshold planes are all parallel to each other in certain ideal cases. Suppose that the original
dataset can bemodeled as

x v u e , A.2i i i0 0r= + + ( )

where xi denotes the vector representing the ith data, v0 a vector representing the origin, ir i.i.d.random scalar
variables, u0 a vector representing the characteristic direction and ei i.i.d.randomvectors that are perpendicular
to u0. Note thatmultivariate Gaussian distributionswith a non-identity covariancematrix are included in this
class ofmultivariate distributions. Given that the variance of ei along any direction is smaller than the variance
of ir , the PC1 vector should be almost parallel to u0 [58]. In this case, removing the data below a threshold plane
perpendicular to the original PC1 vector (i.e. accepting the data with ir larger than a threshold) does not affect
the location of the PC1 line, as long as the variance of ir in the new dataset is larger than those of ei. As a result,
self-consistent threshold planes are always almost perpendicular to the PC1 vector for the original dataset, and
thus almost parallel to each other.

We can determine if the data conform to themodel (A.2) based onwhether the self-consistent threshold
planes are placed in parallel. Assuming that themultivariate company distribution in the large-company regime
can be described by themodel (A.2) (i.e. ‘straightly’ distributed as in figure 1), the self-consistent threshold
planes should be all parallel to each other above a ‘true’ threshold.

A series of self-consistent threshold planes for our data is determined byminimizing the difference between
the initial threshold plane and a plane that is perpendicular to the PC1 line for the filtered data. Inmore detail,
our procedure is as follows. First, we set an arbitrary threshold plane and define afiltering criterion,

a k a a slog log log 1.1
0

2
0

3
0 + +ℓ( ) ( ) ( )

Next, we apply PCA to the filtered data and obtain a PC1 line, which passes through themean of thefiltered data
distribution. Then, we can determine the plane,

a k a a slog log log 1,1
1

2
1

3
1+ + =ℓ( ) ( ) ( )

that is perpendicular to the PC1 line and intersects the PC1 line at a number of trading partners, ktarg.We
hereafter refer to this parameter, ktarg , as the target size of a self-consistent threshold plane. Then, the sumof

squared errors, a ai i i1
3 1 0 2S -= ( )( ) ( ) , isminimized until it almost reaches zero. Themethod thus determines a

self-consistent threshold plane given the single parameter of company size. Data for all years (1994–2015) are
used as the input to the procedure. Themethod is tried for values of ktarg that are evenly spaced in logarithmic
scale.We use theNelder–Meadmethod [60] as implemented inR (ver.3.5.1) forminimization. Thefinal sumof
squared errors after theminimization is less than 10−10 for all the values of ktarg plotted infigure A1.

The principal component vectors for the self-consistently filtered datasets are plotted against the target size,
ktarg, infigure A1(a). The vector components largely fluctuates at ktarg<10, but are remarkably stable at
ktarg�10. In this zone, the scaling exponents for pairs of variables also approximately agreewith the results
from the standard regression analysis, when the data of the explanatory variable less than a threshold (set to be

Figure A1. (a)Components of thefirst principal component (PC1) vectors resulting from the principal component analysis after
thresholding are plotted against the target size ktarg. The values of components are stable after ktarg reaches 10, abovewhich thefiltered
data are considered to belong to the large-company regime. (b) Scaling exponents calculated as ratios between the vector components
are plotted against ktarg.When ktarg�10, the ratios agree with the exponents from regression analysis applied to the data in large-
company regime (horizontal dashed lines).
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100 here) are excluded from the regression. The regression analysis is used here to quantify the previous
examination of scaling exponents [24]. The horizontal dashed lines infigure A1(b) indicate the scaling
exponents from the standard regression analysis of the pairs of variables, (logℓ, log k), (log s, log k) and (log s,
logℓ), with the former being explained and the latter being explanatory. These results highly suggest that the
self-consistent threshold plane for ktarg=10 best discriminates between the small- and large-company regimes.

A.2. Evolvingflow and dissipation rates in large-company regime
Wehere discuss the evolving flowdiagrams and the heatmaps of dissipation rates for the large-company regime.
To obtain thefigures, we apply the samemethods as in themain text, except using the PCA results after the self-
consistent datafiltering of ktarg=10.

As seen in eachpanel offigureA2, the tendency towards a stable state is also evident in the large-company
regime.The stability curve is parallel to the scaling curve (the PC1 linemarkedby a red line infiguresA2(a) and (c)),
although the locationof the stability curve, especially regarding thePC2value, differs from the scaling curve. Indeed,
as shown infigureA2(b), companies are stable at a PC2 value considerably lower than the average (central red dot).
InfigureA2(c), the scalingPC1 line (red solid line) is locateddifferently from the stability line (reddashed line).We
consider this to be the consequence of continuously growing amount of the tradingnetworkdata.Due to this
increase, a companywithout any real change in k typically experience an increase of the tradingpartners in the
dataset. As the normalizedPC2 value (i.e. k0.80 ln 0.55 ln- + ℓ + s0.22 ln ln 0.110+ ) is highly affected by
the number of tradingpartners (k), increasing kwoulddecrease the PC2valuewithout any real change, pushing the
stability curve towards a low-PC2 location.We expect that the position of the scaling and the stability curveswould
be identical if the amount of datawere stable.

Figure A2.Evolving flowdiagrams on sloped slices defined by principal component (PC) vectors for companies in the large-company
regime. The diagrams illustrate the estimated average log-transformed growth per year in slices of the phase space. The direction and
width of the curves in the slices indicate the velocity vector of average flowwithin the slicing plane. The estimated average flow
perpendicular to the plane is illustratedwith background colors, red, gray or blue representing plus, zero orminus sales growth,
respectively. Each panel represents theflowdiagrams for (a) the PC2–PC3plane, (b) the PC1–PC3 plane and (c) the PC1–PC2 plane
that pass through the average point of the distribution (red point). Red solid line represents the PC1 axis that passes through the
average point in panels (a) and (c). All the variables (k, ℓ and s) are greater than a unit inside the zonesmarked bywhite dashed
lines. PC1, PC2 and PC3 are respectively k s k s0.54 ln 0.52 ln 0.66 ln , 0.80 ln 0.55 ln 0.22 ln+ + - + +ℓ ℓ( ) ( ) and

k s0.25 ln 0.65 ln 0.72 ln- - +ℓ( )while in the diagrams they are normalizedwith themean corresponding to
k s, , 22.0, 150, 7162=ℓ( ) ( ).C1 (=3.86×10−5),C2 (=0.110) andC3 (=0.0992) are thenormalizationconstants. Seefigure 5(c) for the
conceptual illustrationof the slices in the three-dimensional space. In panel (c), the reddashed line indicates the line ofPC2=ln[1/15].
Companiesflowtowards thePC1 line (red solid line) in thePC1–PC3plane and towards a point near the central red point (i.e. themeanof
the distribution) in thePC2–PC3plane, PC3 is stable at a value close to themean (panel (a)). AlthoughPC2 is stable amagnitude oforder
below themean (panels (b) and (c)), the stability curve is parallel to thePC1 line (panel (c)).
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Likewise, the estimated dissipation rates (m)of companies in the large-company regime are consistentwith our
conclusion on the smaller-company regime.The rate, m, is typically higher in the zones far from the scaling line
compared to those near the scaling line, as illustrated infigureA3. Inparticular, the dissipation rate gets higher as
thePC1 value gets higher (figuresA3(a) and (b))or thePC2value getmore distant from the average (markedby red
dot in the center offigureA3(b)). Thismight help to constrain themultivariate company distribution around the
PC1 line. Although theminimumof m is not located in the exactly sameplace as the scaling line, the contours of
constant m are almost parallel to the scaling line (thehorizontal red line infigureA3(a)). This indicates that m is
almost independent of thePC1 value, which is consistentwith the previous observation that the survival rate of
publicly tradedNorthAmerican companies are almost independent of their age andbusiness sector [55]. Note that
companieswith the lowest dissipation rate are located in the zone of a high average sales growth, as shown in
figuresA2(a) and (b).We consider that this high growth prevents companies fromdisappearing.
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