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Abstract

Although scaling relations of power law forms have been revealed in a wide variety of complex systems,
the origin of scaling relations in real systems remains mostly unsolved. Based on a long tradition in
physics, we here explore the phase space dynamics of business companies, whose different measures of
size have been found to exhibit multiple scaling relations. Using a large scale dataset of Japanese
companies covering over two million companies for over two decades (1994-2015), we compile the
data of three measures of size, namely, annual sales, number of employee and number of trading
partners. Tracking the historical time evolution of companies, we first show that there exists a stable
region that attracts most of the data points in the long time scale, although the company dynamics in
the three-dimensional phase space looks random in a shorter time scale. We then elaborate on
‘evolving flow diagrams’ of the averaged motion in the 3D space. Remarkably, the flow diagrams
indicate that a 3D curve which represents the scaling relations between the three size measures can be
regarded as an approximate attractor of the averaged flows. The results could serve for better modeling
and understanding of companies dynamics and our method can be applied to other dynamics such as
social and biological phenomena.

1. Introduction

Scaling relations and scaling laws with non-trivial exponents have been central issues in physics of complex
phenomena. Since the non-trivial scaling relation around a critical point was first discovered over a century ago
[1], the scaling concept had guided the exploration into critical phenomena [2—7]. It was subsequently applied to
soft matter physics and led to the discovery of universal features of polymers [8, 9] and colloidal aggregates [10].
Meanwhile, scaling relations had also been found for complex systems such as biodiversity in ecological
communities [11, 12], animal bodies and cells [13—16], human cities [ 17-19] and business companies [20-25].
Recent physical and mathematical studies have attempted to explain scaling relations in such systems and
provided plausible theories for animal bodies or cells [26, 27] and for human cities [28, 29]. All these studies have
employed statistical mechanical approach, where macroscopic laws and patterns are explained by assuming
approximate laws and dynamics at more fundamental levels.

However, there remains a significant challenge in statistical physics approach to complex phenomena,
because the dynamics at fundamental levels has not been sufficiently established for biological, social or
economic systems. We assume that this lack of established laws at microscopic levels has led to a plethora of
models for such systems. On business companies, for example, models have highlighted several mechanisms or
factors as diverse as hierarchical organization [30], stochasticity in competition [31, 32], financial [33] or hiring/
firing [34] behaviors, preferential attachment of company units [35], social networks [36] and multiple
independent components in companies [35, 37-40]. Although they often agree with the data at the level of
distributions calculated from a snapshot of the systems, these models lack validation by direct observation at
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microscopic levels, or fail when their microscopic dynamics is explored [41]. The situation is similar in
biodiversity research: two classes of models with radically different assumptions on dynamics at microscopic
levels both can explain the rank-size distribution of abundance [42, 43] and spatial distributions [44, 45] of
natural species.

During the development of statistical mechanics, there emerged an alternative approach, in which one
explores laws and dynamics only in terms of the ‘macroscopic’ variables that allow direct observation. More
specifically, the evolution of complex systems in the phase space of ‘macroscopic’ variables is studied. This
approach dates back at least to Lorenz [46, 47], who is also famous for the pioneering work [48] in chaos theory.
He proposed the analogue method: trajectories of systems with unknown dynamics could be predicted by
collecting the data from the past with configurations similar to the present. By applying this method to the world
trade, Cristelli et al [49] recently demonstrated that countries and territories were in either turbulent or laminar
zones in the phase space of their GDP and ‘fitness’ measure in the trading network. This suggests that the
methodology in this line could be vital to studies of complex phenomena. We consider this approach to be
complementary to the statistical mechanical approach. Although observed scaling properties in complex
systems may be explained by the statistical physics models enumerated above, explanation of such properties by
the dynamics at macroscopic levels would be valuable: the characterized dynamics could be used to justify or
falsify the possible theories on dynamics at microscopic levels. Nevertheless, such an approach to the scaling
relations has not been tested yet to the best of our knowledge.

Here we empirically observe how companies evolve into the previously known scaling relations in a three-
dimensional phase space. Instead of the statistical mechanical approach, we introduce the macro-variables
approach. To this aim, we utilize a comprehensive dataset of approximately 2 million Japanese companies
accumulated over more than 20 years since 1994. We compile the data of three measures of size from the dataset:
(i) monetary size estimated typically by the annual sales, (ii) labor size measured by the number of employees,
and (iii) the size of transactional activity which can be characterized by the number of companies with which the
focal company has a direct trading relationship. These measures of size were previously studied in the context of
scaling relations with scale-invariant fluctuations [24]. Based on this huge dataset, several pieces of evidence are
presented which indicate that companies tend to evolve into a single three-dimensional ‘scaling curve’, on which
companies are ‘stable’ in the sense that their average velocity is close to zero.

The rest of the paper is organized as follows. First, we briefly discuss our compilation of the data. Second, we
show that the previously reported multiple two-dimensional scaling relations can be represented by a curve in
the three-dimensional phase space. We then inspect the time evolution of companies testing and disproving the
hypothesis that it is an anisotropic random walk with constant diffusion coefficients. We further derive evolving
flow diagrams from the data to demonstrate that companies move towards the scaling curve on average. Lastly,
we discuss the implications of our results and future research directions.

2. Data compilation

We compile the data utilized here from an exhaustive dataset by a major credit reporter that summarizes the
description of Japanese companies in the period of 19942015 (COSMOS 2 by Teikoku Databank, Ltd.),
available to us in January, 2017. The dataset contains total of 2.415 x 10° companies (1.263 x 10°in yearly
average). We filtered out a small fraction of financial companies and governmental organizations whose sales are
defined very differently from other ordinary companies. We also removed a very small number of sales data
which were recorded more than 8 years after the publication of the financial statement. Additionally, we
excluded the sales data where the end of fiscal year changes, because some of them are not likely to be annual
sales. Therefore, our final dataset, which consists of totally 2.395 x 10° companies (1.247 x 10°in yearly
average), primarily concerns manufacturing, construction or wholesale companies. Here, we have the data of
annual sales, s, and the number of employees, £.

We also construct a trading network for every year from the list of trading relationships between companies,
to obtain the degree k (i.e. the number of direct trading partners) of every company. The network includes
3.051 x 10°trading links per year on average. This enables us to consider the companies’ size in terms of
transactional activity in the network of trading partnership [24]. We note that data of the trading network is
almost monotonically growing with years, from 1.826 x 10° trading links in 1994 to 3.873 x 10°in 2015.

3. Three-dimensional scaling curve

We first present a unified picture for the previously reported triple scaling relations between pairs of variables in
the three-dimensional phase space of (k, 7, s). Watanabe et al[24] demonstrated the triple scaling relations
between the number of trading partners, k, the number of employees, Z, and the annual sales, s, for middle- and
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Figure 1. Representation of company states by three macro-variables, namely, the number of trading partners (k), the number of
employees (£) and annual sales (s). The bivariate scaling relations between k, £ and s can be interpreted as the projection of a single
three-dimensional ‘scaling’ curve (red solid curve). Around the central cube, bivariate distributions are plotted from the dataset as in
Watanabe et al [24], with A, +,%, {) and ¥ respectively indicating 5-, 25-, 50-, 75- and 95-percentile of the distribution of points
along the vertical axis conditional on the variable represented by the horizontal axis. Percentiles other than the median (the 50-
percentile) are vertically shifted for the purpose of illustration. The red error bar in the top-right panel represents the typical size of
conditional interquartile range (the range between the 25- and 75-percentiles) in all the three panels. The dashed lines indicate the
slope, in logarithmic scales, of 1.0 for the k—¢ relationship, 1.2 for the k—s relationship and 1.2 for the #—srelationship.

large-sized companies: £ o< k', s oc k! and s oc £1. These relations were defined in terms of conditional
medians. For example, the equation, s oc £}, means that the median s for companies with £ employees
increases as #'” when £ is increased. Furthermore, fluctuations around the conditional medians were found to
be scale-invariant: the probability of having, for example, double or half the conditional median sales is
independent of kand #. In other words, the distributions of #/k'*, s/k'~* and s /¢ are independent of the size
of companies, and these variables are, in this sense, intensive. Such scaling relations fit our dataset well for all 22
years with slightly different scaling exponents of 1.2 for k—s and #—s scaling (figure 1). This means that when the
three-dimensional distribution of companies is projected to a two-dimensional plane by neglecting one of the
variables, companies are densely located on a line defined by the scaling relations. This highly suggests that the
three-dimensional distribution of companies can be represented by a single curve in the three-dimensional
phase space (red line in figure 1), near which the data points are densely located. We hereafter refer to this
hypothetical curve as the ‘scaling curve’.

While the scaling curve is linear in logarithmic scales for middle- and large-sized companies, this does not
hold for small-sized companies. Indeed, in the two-dimensional plots of conditional quantiles (figure 1), the
scaling exponents are evidently different at the zone of small-sized companies and that of middle- or large-sized
ones. Therefore, we hereafter refer to these two different regimes of scaling as the small-company and large-
company regimes, considering them separately.

4. Alignment of companies towards a curve

Here we first visually inspect the data to obtain an intuitive view of the three-dimensional dynamics of
companies. As in the previous section, we regard a company as a point in the three-dimensional space of the log-
transformed measures of size (K, L,S) = (logk, log ¢ and logs). Historical changes of size measures of
companies, initially near a point in the space, are demonstrated in figure 2. Historical changes of total of 6792
companies near (k, £, s) = (10, 10, 500) are tracked to show the representative evolution in the phase space (see
figure 2). Itis evident from the figure that companies are not evolving isotropically in this 3D representation.
Rather, there seems to exist a curve along which companies are most likely to move.

Applying principal component analysis (PCA) on the data can further reveal whether the evolving dynamics
of companies can be modeled as an anisotropic random walk with constant diffusion coefficients. If we assume
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Figure 2. Typical time evolution of companies in the three-dimensional space of the number of trading partners (k), the number of
employees (£) and annual sales (s). 6792 companies that are initially located near a point (k, 7, s) =~ (10, 10, 500) in the 1994 data are
tracked and all the companies surviving in the following years with complete data are plotted with trajectories from locations in the
previous year of presence. Note that the resulting distributions of companies in years after 1999 are clearly anisotropic. Red dashed
line in panel (f) indicates a line parallel to the first principal component (PC1) vector in 2015 that passes through the mean of the point
distribution.

the dynamics as direction-dependent yet time- or location-independent diffusion from a specific point, two
consequences follow. First, the characteristic direction along which the points are most widely distributed does
not change with time. Second, the three-dimensional shape of point distributions at different times are similar.
Both conclusions can be conveniently tested with PCA. Indeed, the first principal component (PC1) resulting
from PCA specifies the characteristic direction along which the data are most widely distributed, whereas the
second principal component (PC2) indicates the second characteristic direction of the distribution after it is
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Figure 3. Results of the principal component analysis for companies of fixed initial sizes in 1994. Panels (a) and (b) represent the
evolution of principal component vectors, measured by the angle, 6, between the two principal component (PC) vectors, #; 1994+ A
(the ith principal component (PCi) vector at the year 1994 + At)and u; 5015 (PCivector at the year 2015). The angle § is relatively
small compared to 7r/2 in the last 15 years. In panels (¢) and (d), the mean squared variation (variance) along the respective principal
component is plotted against the year. PC1 variance is increasing linearly with time, while the second and third ones (PC2 and PC3)
almost reach a plateau 10 years after the initial year. This suggests that companies do diffuse in the PC1 direction whereas the diffusion
in the PC2 and PC3 directions is constrained. Panels represent the results for 6792 companies of the initial size (k, £, s) = (10, 10, 500)
(panels (a) and (c)) and 26509 companies of the initial size (k, ¢, s) ~ (3, 3, 100) (panels (b) and (d)).

projected into the plane perpendicular to PC1. The procedure is repeated until all the variances are accounted.
Note that the principal components (PCs) are perpendicular to each other. Stability of characteristic directions
can thus be evaluated by the stability of PCs, while similarity of distributions can also be tested by the stability of
ratios between the variances along the PCs.

To further characterize the apparent anisotropic moves, we apply PCA on two different groups of companies
starting in 1994 from different points in the three-dimensional space, (k, £, s) ~ x; = (10, 10, 500) and
(k, ¢, s) = x% = (3, 3, 100). Welet ul-(}) and u,-(j) denote the unit PCivectors in the year ¢ for companies starting
from x and x, respectively. Two results emerge from the analysis. First, the PC unit vectors turn to be
remarkably stable across years (see figure 3). We measure the differences between the principal component
vectors in different years by the angles between them, 0 (u;;, u; ) = arccos u;; - u; ;. Overall, the differences
from the final year, 6 (4, 1994+ As> Ui 2015), are very small (8 < 7/2) and become almost negligible 5 years after
the initial year, as seen in figures 3(a) and (b). Therefore, we conclude that the characteristic directions do not
change over time. Second, however, there is a clear sign of deviation from a random walk. The variance along
PC2 and PC3 almost reaches a plateau 10 years after the initial year, while variance along PC1 increases linearly
(figures 3(c) and (d)), which is enough to reject the random walk hypothesis. This indicates that fluctuations
along PC1 of the distribution may be modeled as a random walk, but fluctuations perpendicular to PC1 reach a
steady state. It thus suggests that there exists a Langevin-like ‘field’ that drives back the randomly deviating
companies into aline parallel to PC1, as seen in figure 2(f) with the red dashed central line.

5. Evolving flow diagrams
Considering the results in the previous section, it is natural to hypothesize that companies that are distant from

the scaling curve have the tendency of flow towards this curve. To support this hypothesis, we elaborate on what
we refer to as the ‘evolving flow diagrams’ by plotting the estimated vector field of the annual growth in the three
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dimensional space of k, # and s. This is inspired by previous work on the prediction of countries’ economic
growth [49], where the authors advocate the applicability of analogue methods [46, 47] to economic systems.
We first estimate the average growth rates of size measures, k, £ and s, at a specific point (ko, £¢, So) in the
three-dimensional phase space. We do this by collecting the data sufficiently near the point and computing the
arithmetic mean of log-transformed growth rates. Let us define dck’g (ko, %, o) as the Euclidean distance of
company ¢ from a fixed point (ky, £, so) in the previous year t — 1 in the logarithmically scaled space:

dos = J(ds0) 4 @PEOP 4 (@2

where

480 = loglk:(t — 1) /kol,

480 =loglt.(t — 1) /%),

ds®) = log[s.(t — 1) /so].
We sample the companies within the Euclidean radius dj,, < 10g[101/ #] and eventually get the Nadaraya—
Watson estimate with the kernel function of rectangular pulse [50]. Nevertheless, when the resulting sample size
is less than 200, the threshold of d}.g is enlarged until the sample number reaches or exceeds 200 to suppress the
variability of estimates, therefore employing the 200-nearest neighbor method. Thus, the final estimation of
mean velocity V (k, £, s) in the log-scaled space is obtained from the equation

(#(Cr@a)) 'Yy Ve

Co_1(dy)) = 200
Tk £, 5) = - (F#(Cr1(dwnr) )’

#(Cy-1(r200) >

(otherwise)

V.
c€Cror(ran) '

where

log[k.(t) /k.(t — 1)]

Voo = | loglze(t) /4. (t — D1 |,

log[s.(t) /sc.(t — 1)]

Cilds k, £, 5) = {c | d %(k, ¢, 5) < d},
v =min {r € R | #(C_1(r)) > N},
d: = log[10'/8],

and #(S) represents the number of elements in a set S. Taking the logarithm of growth rates, we can limit their
possible ranges of several orders of magnitude within those expected from exponential distributions. This makes
the arithmetic mean a more robust estimator of the typical value. Note that the arithmetic mean oflog-
transformed growth rates is equal to the logarithm of geometric mean of growth rates.

We then render two-dimensional diagrams that represent slices of the three-dimensional space, exploiting
the method developed in the field of computer graphics [51]. In short, the method follows two steps: (i) placing
some points randomly on the plane and drawing streamlines that pass through them, and (ii) repeatedly
comparing the original image with a randomly modified one and selecting the one in which the streamlines are
placed more homogeneously. Random modifications include inserting, deleting, lengthening, shortening and
parallel moving of a streamline.

We show some slices of the vector space in figure 4. Two slices of constant sales (s = 10*%and s = 10°~
million yen, respectively) are shown in the figure. The streamlines with arrows represent the average movement
of companies parallel to the slice, while background colors indicate the average flow orthogonal to the slicing
plane. For example, one can see the average time evolution of a company of the size (k, £, s) = (10, 100, 100)
from figure 4. The point (k, £) = (10, 100) can be specified on the slice of s = 100 (see the yellow dotin
figure 4(a)). The red background around the dot indicates that the company grew in sales by a factor of over 1.15
on average in a year, while the employees was declining rapidly by a factor of 1.6 and almost no change is
expected for the number of trading partners. Note that the data in all years of 1994-2015 are joined together to
have the maximal sample size.

Clearest in figure 4 is the mean flows in # (the number of employees) and k (the number of trading partners)
towards a point of stability. It can be seen in figure 4 that the point of stability is located near (k, ) = (2, 3) in the
slice of s = 10*°, and near (k, #) = (100, 15)in the slice of s = 10, respectively (see the red dots in both
panels). Deviations from the point are compensated by the moving parallel to the slice, i.e. their simultaneous
changes in the trading (k) and employment (¢). Therefore, this point marks the steady state of the companies
having a constant sale.
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Figure 4. Evolving flow diagrams illustrating the estimated average log-transformed growth per year in slices of the phase space. The
phase space is sliced by two planes of annual sales s equal to (a) 10> or (b) 10*> million yen. The direction and width of the curves in

the slices indicate the velocity vector of average flow within the slicing plane. The estimated average flow perpendicular to the plane is
illustrated with background colors, red, gray or blue representing plus, zero or minus sales growth, respectively. The yellow dot located
at (k,Z,s) = (10, 100, 100) exemplifies a point with a fast flow, while the red dots located at (k, #, s) = (2, 3, 100) in panel (a) and at
(k,¢,s) = (100, 15, 316) in panel (b) represent the stable point. Both plots are obtained based on the total aggregation of data of all years.
Note that our method interpolates the average rates so that one can have estimation for points around which few companies actually
exist. A stable point can be seen for both slices, while the stable point is shifted in the high-k and high-# direction with increasing sales.

Itis also seen from comparison of figures 4(a) and (b) that the point of stability shifts in the direction of a
large number of trading partners (k) and employees (¢) as the fixed value of sale (s) is set to be higher. This means
that the points of stability for slices of constant sales constitute a curve in the three-dimensional space, which
changes from low values of k, £ and s to higher values. We hereafter refer to this curve defined from the mean
flows as the stability curve.

We further notice in figure 4 that those points on the stability curve can be characterized by relatively very
slow absolute changes in sales: average flows around the points of stability are close to zero in comparison to
other zones of the space. Therefore, the stability curve can be regarded as an attractor of the mean flow of
companies in the phase space, since the average flows on the curve is almost zero in any direction.

Although visually impressing, the results should be interpreted with some care. First, the estimates are most
accurate in zones of small sizes (bottom-left in figure 4) and less accurate in other zones, because of poor
statistics due to less numbers of sample companies. In particular, the number of samples is fewest at the edges of
bottom-right and top-left, where very few companies exist. When the growth rates are estimated for such points
without any company around, these estimates are based on data points on the nearest edge of the distribution.
Furthermore, the estimates are biased when there is a gradient of data density: the center of the distribution
then has more weight than peripheral regions, so that the effects of moving outward from the center of the

7
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Figure 5. Evolving flow diagrams for sloped slices defined by principal components (PC). Flow diagrams for (a) the PC2—PC3 plane
and (b) the PC1-PC3 plane that pass through the average point of the distribution (red point). Red solid line represents the PC1 axis
that passes through the average point in panel (a). Companies flow towards PC1 line (red solid line) in the PC1-PC3 plane and
towards the central red point (i.e. the mean of the distribution) in the PC2-PC3 plane. All the variables (k, £ and s) are greater than a
unit inside the zones marked by white dashed lines. PC1, PC2 and PC3 are respectively (0.30 In k + 0.61 In £ + 0.74 In s),
(—0.88In k + 0.48 In # + 0.03 In s)and (—0.37 In k — 0.61 In £ + 0.68 In s) while in the diagrams they are normalized with the
mean corresponding to (k, 7, s) = (3.33,7.30, 183). (c) Conceptual illustration of the slices in the three-dimensional space, where the
red point in the center represent the mean of distribution. PClines are perpendicularly crossing to each other at the red point. Note
that some zones of planes are out of the data range. For example, sales are less than a unit (in million yen) at the bottom right edge on
the PC1-PC3 plane, while in the actual data every sale of a company less than a unit is round up to be recorded as a unit.

distribution on growth rate are always underestimated. Finally, the continuous increase of trading link data (almost
two-fold in the two decades) is likely to add positive bias in the estimate of k flow (the change in number of trading
partners), turning the direction of average flows rightward in figure 4. This might be the cause of flows in top-right of
figure 4(b) that never reach the stability points but continuously go in the right. However, our main conclusion
remains unaffected, as the flows towards the steady state cannot be explained merely by these biases and errors.
Considering the results presented in figures 3 and 4 together, it is natural to hypothesize that the stability
curve is almost identical to the scaling curve as shown in figure 2(f). We support this by plotting the evolving flow
diagrams for sloped slices parallel to the PC vectors (figure 5(a)). PCA is here newly applied to all the data joined

together from all years, yielding the PC vectors,
u™ = (0.30ux + 0.61u; + 0.74us),

u = (—0.88ux + 0.48u; — 0.03us),
ul = (—0.37ug — 0.64u; + 0.68us),

(1a)
(1b)
(1c)
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where ug, u; and ug are the unit vectors in the direction oflog k, log # and log s axes, respectively. The differences
between these PC vectors and those calculated above for the two groups of companies are small

® (ul-au, u;7015) < 0.15). Note that PC1, i.e. ulau - x,where x = (k, ¢, s)!, indicates the overall size of the
company, while PC2, i.e. ! - x, indicates the ratio of the employee number to the number of trading partners.
PC3,i.e. uil - x, can be regarded as the sales scaled against k (the number of trading partners) and Z (the
number of employees), because PC3 scales log [k~0-37£~0-64508] = Jog[(s5/k"-55£094)0-68], Note that the PC1
value is extensive in the sense that it scales with the company size while the PC2 and PC3 values are intensive just
as?/k*°, s/k'? and s/£' discussed in section 3.

As seen in the diagram, it supports our hypothesis that companies are on average flowing towards the PC1
line that pass through the mean of the distribution (marked by the red dot in figures 5(a) and (b)). On the other
hand, companies are almost ‘neutrally’ stable on the PC1 line: after a small perturbation, a company on the line
tends back towards the line, but a displacement parallel to the PC1 line would not be recovered, due to the fact
that the flow along the PC1 line is close to zero near the line (see figure 5(b)).

Some non-ideal dynamics of the system is evident in figure 5. First, one would notice the small flow on the PC1
line in the declining direction. This is consistent with the previous studies that have reported negative sales growth
of companies on average [52], considering that alarge proportion of the companies are located near the PC1 line by
definition. Second, the blue-colored area in figure 5(a) is far larger than the red-colored area, meaning that PC2 is
generally highly likely to decrease. Since the PC2 value (i.e. —0.88Ink + 0.481nZ — 0.03 Ins) is determined
mainly by the number of trading partners (k), this suggests that the number of trading partners (k) of a company
tends to increase constantly. This is particularly well shown in figure 4(b): high-k and high-# companies seem to
tend towards higher-k states rather than the stable state. We attribute the increase of k to the constantly growing
amount of data itself, since adding new companies to the database necessarily leads to increasing the trading
relations previously not recognized in the data. Nevertheless, the PC1 line remains an approximate attractor in the
dynamical system of the averaged motion, in the sense that companies flow primarily towards the line and the
speed of flow is considerably lower on the line. We conclude that the PC1 line, which we consider to be a part of the
scaling curve, approximately agrees well with the stability curve in the small-company regime. Note that we obtain
similar results for the large-company regime as presented in appendix.

6. Dissipation rates

Apart from the average flow that we described above, we can also regard the difference in the disappearance or
dissipation rate as the origin of a stable distribution of companies in the phase space. Recall that a random walk
process has no steady state. In order for a stochastic process to have a steady state, diffusion has to be
compensated by some countereffects. In our case, we suppose that if companies disappear more rapidly at the
zones far from the scaling curve compared to the zones near it, this difference in the dissipation rate could keep
the distribution near the scaling curve against the diffusive effects that lead the system to non-stationary
dynamics.

In order to explore our hypothesis, we employ a method slightly modified from the one in the previous
section. First, a company is determined to be nonexistent in a year ¢t if there is no record for the company’s
existence either in the year ¢ or in the following year t + 1. We then compute the estimated dissipation rate at
each point, fi(k, Z, s), from the data of all years as follows:

#(Ct— 1 (dthr))7 lzce Cro i) 6c,t
(#(Cr—1(dunr)) = 1000)
#(Cr (ﬁooo))71235E Ct—l(rIOOO)(SC)t

(otherwise)

ik, £, ) =

>

where 0, ,is 1 (if the company c does not exist in year t) or 0 (otherwise) and dyy,. is here set to be log[lol/ 4.

We plot two slices of the scalar field of dissipation rates, ji(k, £, s), into respective heatmaps (figure 6). The
slices are set in the same way as in figure 5. Figure 6(a) clearly shows that i is higher at zones far from the PC1 line
compared to zones near the line. It is also evident that the rate of dissipation is lower at the zones of larger PC1,
which is in line with an earlier report that such a rate decreases with company size [53]. The difference in
dissipation rate in the PC3 direction also conforms to the expectation in figure 6(b), although i is almost
monotonically increasing with the PC2 value against our hypothesis. Note that alow value of PC2
(~log [k38 /£0-48]) indicates that the company has more trading partners compared to the average one of those
with the same number of employees, therefore suggesting superiority, rather than inferiority, of the company.
Note that in similar plots for the large-company regime, however, the tendency of higher dissipation rate at
zones far from the scaling curve is more evident (appendix). In conclusion, the difference in the dissipation also
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Figure 6. Estimated dissipation or disappearance rates for companies on sloped slices defined by principal components (PC). Blue,
gray and red background colors represent a low, medium or high dissipation rate, respectively. Each panel represents the same slices as
in figure 5: (a) the PC1-PC3 plane and (b) the PC2—-PC3 plane. Companies are more likely to disappear when their PC3 value is far
from the central red point (i.e. the mean of the distribution) in the PC1-PC2 plane. This is also seen in the PC2-PC3 plane. All the
variables (k, £ and s) are greater than a unit inside the zones marked by white dashed lines.

playsarole in stabilizing the distribution of companies by keeping them near the scaling curve against random
diffusion.

7. Discussion and conclusion

We have analyzed the dynamics of companies, highlighting the general tendency of companies towards a steady
state. As we have seen in figure 5, there exist tendencies in the time evolution leading companies to a ‘stability
curve’ in the three-dimensional space. For small-size companies, the curve is parallel to the PC1 vector of the
company distribution (figure 5(a)). Note that the PC1 vector does not agree with the previously reported scaling
exponents, especially with regard to the number of trading partners, k. As the companies are primarily scattered
along the first principal component (PC1) direction by definition, equation (1a) indicates that In £ increases by
0.61 on average when In k increases by 0.30, thus suggesting the square relationship between kand £ (£ o k).
On the other hand, the relation between k and £ has been found to be almost linear (¢ o k) in the previous study
[24]. This is probably because of the different data that has been analyzed. In our analysis, the vast majority of
companies are the small companies, while the small-size companies have been excluded from the analysis in the
previous study. Indeed, when companies of k 5 10 that belong to the small-company regime are excluded (see
appendix), the PCA recovers the previously reported scaling relations (see figure A1) and the stability curve is
again parallel to the PC1 vector of the truncated company distribution (see figure A2). Therefore, we conclude
that the stability curve can be approximated by a single scaling curve (composed of two functions for different
regimes) over the whole range.

We are inclined to interpret our results of flows towards the scaling curve as an emergent property. If the
scaling relations and the bounded dynamics were the result of a rigid regulation, there could be a clear-cut
threshold over which companies are not allowed to exist. On the contrary, the distribution of companies in the
three-dimensional space is rather smooth, as revealed in the previous study [24]. Moreover, the dissipation rate
is higher at zones far from the scaling curve compared to zones near the curve. This suggests that there are
difficulties in staying at the zones distant from the scaling curve, and that the moves towards the scaling curve are
adaptive and spontaneous.

It remains an open question what are the origins of the two different regimes of scaling. One possible factor is
the discretized values of k and ¢ that might strongly affect an analysis particularly when they are less than 10.
Nevertheless, different scaling exponents might also be relevant to differences in actual dynamics of companies.
For example, the number of companies having 5-10 trading partners are more than expected from the power-
law tail of the distribution in our dataset (as seen in [54]). This might suggest that there is a ‘barrier’ that prevents
those in the small-company regime from entering the large-company regime. Existence of such a barrier would
be suggestive of different mechanisms actually at work in different regimes.

While all kinds of companies are collectively used in our current analysis, finer-grained analyses are possible
in the framework we have presented here. For example, the dynamical similarity between companies of different
industrial sectors can be evaluated. Since survival rates of companies are known to be surprisingly similar across
different sectors [55], it seems reasonable to hypothesize that the dynamics in the phase space is also similar.
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Another possible direction is to study the dynamics for companies of different ages. Despite much consideration
devoted to the topic, empirical research on whether companies behave differently depending on their age is still
lacking.

Itis important to note that there are always temporal fluctuations in companies’ size measures [20, 30, 35],
which are presumably a dominant factor of company dynamics (diffusion) especially around the stability curve.
We speculate that the diffusion effects of the stochastic growth rates are in equilibrium with the average flow
discussed above. This might lead to the universal fat-tailed distribution of companies around the scaling
relations [24] through a process similar to a random multiplicative process [56]. However, the connection
between the common scaling function and the stochastic dynamics is yet to be established.

Our results might support the claim [49] that the analogue method is beneficial in addressing the problem of
dynamics which cannot be solved by the standard regression analysis, or more generally, by the statistical
analysis of a snapshot of a system. As shown in figure 5(b), low-PC3 companies subsequently tend to increase
their PC1 value, while high-PC3 (and high-PC2) ones are likely to decrease it slightly. Therefore, we could expect
that the ‘natural’ size of companies would be larger for low PC3 compared to high PC3, even if their PC1 values
are the same. This point cannot be revealed only by the PCA.

Finding the novel stylized fact of agreement between the scaling and stability curves, we believe that our
results could be also beneficial to future modeling and theoretical considerations. Although researchers have
formulated numerous models [30—41], we are not aware of any work that could be used to explain the agreement
between the scaling and stability curves demonstrated here. Thus, we suggest that future theoretical studies
should incorporate this phenomenological multi-variate evolution of companies.

We expect that similar results would emerge when applying our method to a different set of companies in
other areas or countries. Interestingly, different scaling exponents for the £ — s relation have been found in
datasets from different countries and areas. While sales (s) increase superlinearly with employees (£) in the
Japanese data, the relation is almost linear in the dataset from the United States of America and sublinear in the
one from the People’s Republic of China [25]. It would be a promising research direction to carry out
comparative studies across different countries and areas. Furthermore, analogous results might emerge when
one examine diverse natural, social or economic systems such as city growth [57] or the species-area relationship
in ecological systems [12].
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Appendix. Scaling and stability curve in large-company regime

A.1. PCA with unbiased thresholding
Here we discuss the method to obtain the threshold that discriminates between the large- and small-company
regimes, so that we can filter out the data points in the small-company regime. We first define a property of data
filtering (i.e. self-consistency) in relation to the principal component vectors for the filtered data. We then present
an algorithm to search for filtering criteria that have the property. This algorithm gives a series of possible threshold
planes as a function of a scalar parameter of company size. In ideal cases, one can find a single ‘true’ threshold of
company size, above which the candidate threshold planes are all placed in parallel to each other.

We define a ‘self-consistency’ for a data filtering,

N
aix; 2 1,
i=1

to be a filtering such that the PC1 vector for the filtered data is perpendicular to the line or (hyper-)plane,

N
a;x;, = 1. (A.l)
i=1

=
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Figure Al. (a) Components of the first principal component (PC1) vectors resulting from the principal component analysis after
thresholding are plotted against the target size ki,.s. The values of components are stable after k., reaches 10, above which the filtered
data are considered to belong to the large-company regime. (b) Scaling exponents calculated as ratios between the vector components
are plotted against k¢,rg. When ko > 10, the ratios agree with the exponents from regression analysis applied to the data in large-
company regime (horizontal dashed lines).

We hereafter refer to the threshold plane (A.1) of a self-consistent criterion as a self-consistent threshold plane.
The definition is inspired by the notion of self-consistency for a principal curve along which the data are aligned
[58, 59]. In our data, the principal curve presumably amounts to the scaling curve (red bold curve in figure 1).

Self-consistent threshold planes are all parallel to each other in certain ideal cases. Suppose that the original
dataset can be modeled as

X; = vy + p;uo + e, (A.2)

where x; denotes the vector representing the ith data, v, a vector representing the origin, p, i.i.d. random scalar
variables, ug a vector representing the characteristic direction and e; i.i.d. random vectors that are perpendicular
to ug. Note that multivariate Gaussian distributions with a non-identity covariance matrix are included in this
class of multivariate distributions. Given that the variance of e; along any direction is smaller than the variance
of p;, the PC1 vector should be almost parallel to u, [58]. In this case, removing the data below a threshold plane
perpendicular to the original PC1 vector (i.e. accepting the data with p, larger than a threshold) does not affect
the location of the PCl1 line, as long as the variance of p, in the new dataset is larger than those of e;. Asaresult,
self-consistent threshold planes are always almost perpendicular to the PC1 vector for the original dataset, and
thus almost parallel to each other.

We can determine if the data conform to the model (A.2) based on whether the self-consistent threshold
planes are placed in parallel. Assuming that the multivariate company distribution in the large-company regime
can be described by the model (A.2) (i.e. ‘straightly’ distributed as in figure 1), the self-consistent threshold
planes should be all parallel to each other above a ‘true’ threshold.

A series of self-consistent threshold planes for our data is determined by minimizing the difference between
the initial threshold plane and a plane that is perpendicular to the PC1 line for the filtered data. In more detail,
our procedure is as follows. First, we set an arbitrary threshold plane and define a filtering criterion,

aPlog k + a®log £ + a{®log s > 1.

Next, we apply PCA to the filtered data and obtain a PC1 line, which passes through the mean of the filtered data
distribution. Then, we can determine the plane,

aPlog k + a{Plog £ + a{Plog s = 1,

that is perpendicular to the PC1 line and intersects the PC1 line at a number of trading partners, ki, ,. We
hereafter refer to this parameter, ktarg, as the target size of a self-consistent threshold plane. Then, the sum of
squared errors, E?Zl(ai(l) — ai(o) )2, is minimized until it almost reaches zero. The method thus determines a
self-consistent threshold plane given the single parameter of company size. Data for all years (1994-2015) are
used as the input to the procedure. The method is tried for values of k¢, that are evenly spaced in logarithmic
scale. We use the Nelder—-Mead method [60] as implemented in R (ver.3.5.1) for minimization. The final sum of
squared errors after the minimization is less than 10~ '° for all the values of kiarg plotted in figure Al.

The principal component vectors for the self-consistently filtered datasets are plotted against the target size,
karg, in figure Al(a). The vector components largely fluctuates at ky,,; < 10, but are remarkably stable at
kiarg = 10.In this zone, the scaling exponents for pairs of variables also approximately agree with the results
from the standard regression analysis, when the data of the explanatory variable less than a threshold (set to be
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Figure A2. Evolving flow diagrams on sloped slices defined by principal component (PC) vectors for companies in the large-company
regime. The diagrams illustrate the estimated average log-transformed growth per year in slices of the phase space. The direction and
width of the curves in the slices indicate the velocity vector of average flow within the slicing plane. The estimated average flow
perpendicular to the plane is illustrated with background colors, red, gray or blue representing plus, zero or minus sales growth,
respectively. Each panel represents the flow diagrams for (a) the PC2—PC3 plane, (b) the PC1-PC3 plane and (c) the PC1-PC2 plane
that pass through the average point of the distribution (red point). Red solid line represents the PC1 axis that passes through the
average point in panels (a) and (c). All the variables (k, £ and s) are greater than a unit inside the zones marked by white dashed

lines. PC1, PC2 and PC3 are respectively (0.54 In k + 0.52 In # + 0.66 In s), (—0.80 In k + 0.55 In # + 0.22 In s) and
(=0.251n k — 0.65 In # 4 0.72 In s) while in the diagrams they are normalized with the mean corresponding to

(k, ¢, s) = (22.0, 150, 7162). C; (=3.86 x 10~>), C, (=0.110) and Cs (=0.0992) are the normalization constants. See figure 5(c) for the
conceptual illustration of the slices in the three-dimensional space. In panel (c), the red dashed line indicates the line of PC2 = In[1/15].
Companies flow towards the PC1 line (red solid line) in the PC1-PC3 plane and towards a point near the central red point (i.e. the mean of
the distribution) in the PC2—-PC3 plane, PC3 is stable at a value close to the mean (panel (a)). Although PC2 is stable a magnitude of order
below the mean (panels (b) and (¢)), the stability curve is parallel to the PC1 line (panel (c)).

100 here) are excluded from the regression. The regression analysis is used here to quantify the previous
examination of scaling exponents [24]. The horizontal dashed lines in figure A1(b) indicate the scaling
exponents from the standard regression analysis of the pairs of variables, (log Z, log k), (log s, log k) and (log s,
log ), with the former being explained and the latter being explanatory. These results highly suggest that the
self-consistent threshold plane for kg = 10 best discriminates between the small- and large-company regimes.

A.2.Evolving flow and dissipation rates in large-company regime

We here discuss the evolving flow diagrams and the heatmaps of dissipation rates for the large-company regime.
To obtain the figures, we apply the same methods as in the main text, except using the PCA results after the self-
consistent data filtering of ki,rg = 10.

As seen in each panel of figure A2, the tendency towards a stable state is also evident in the large-company
regime. The stability curve is parallel to the scaling curve (the PC1 line marked by a red line in figures A2(a) and (c)),
although the location of the stability curve, especially regarding the PC2 value, differs from the scaling curve. Indeed,
as shown in figure A2(b), companies are stable at a PC2 value considerably lower than the average (central red dot).
In figure A2(c), the scaling PCl1 line (red solid line) is located differently from the stability line (red dashed line). We
consider this to be the consequence of continuously growing amount of the trading network data. Due to this
increase, a company without any real change in k typically experience an increase of the trading partners in the
dataset. As the normalized PC2 value (i.e. —0.80 In k 4+ 0.55 In # 4 0.22 In s + In 0.110)is highly affected by
the number of trading partners (k), increasing k would decrease the PC2 value without any real change, pushing the
stability curve towards a low-PC2 location. We expect that the position of the scaling and the stability curves would
be identical if the amount of data were stable.
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Figure A3. Estimated dissipation or disappearance rates on sloped slices defined by principal components (PCs) for the data in the
large-company regime. Blue, gray and red background colors represent alow, medium or high dissipation rate, respectively. Each
panel represents the slices by the same method as in figure 6: (a) the PC1-PC3 plane and (b) the PC2—PC3 plane. Although the
dissipation rate is minimum at a PC3 value lower than the average (panel (a)), the dissipation rate is almost independent of PC1 value
in the large-company regime, which is indicated by the contours curves that are approximately parallel to the red PC1 line. The
dissipation rate get higher when a company is far from the minimum point in the PC2—PC3 plane (panel (b)). C; (=3.86 x 10°), C,
(=0.110) and C; (=0.0992) are the normalization constants. All the variables (k, £ and s) are greater than a unit inside the zones
marked by white dashed lines.

Likewise, the estimated dissipation rates (i) of companies in the large-company regime are consistent with our
conclusion on the smaller-company regime. The rate, [i, is typically higher in the zones far from the scaling line
compared to those near the scaling line, as illustrated in figure A3. In particular, the dissipation rate gets higher as
the PC1 value gets higher (figures A3(a) and (b)) or the PC2 value get more distant from the average (marked by red
dot in the center of figure A3(b)). This might help to constrain the multivariate company distribution around the
PCl line. Although the minimum of i is not located in the exactly same place as the scaling line, the contours of
constant fi are almost parallel to the scaling line (the horizontal red line in figure A3(a)). This indicates that i is
almost independent of the PC1 value, which is consistent with the previous observation that the survival rate of
publicly traded North American companies are almost independent of their age and business sector [55]. Note that
companies with the lowest dissipation rate are located in the zone of a high average sales growth, as shown in
figures A2(a) and (b). We consider that this high growth prevents companies from disappearing.
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