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Abstract

Understanding the resilience of infrastructures, such as a transportation network, has significant
importance for our daily life. Recently, a homogeneous spatial network model was developed for
studying spatial embedded networks with characteristic link length such as power-grids and the
brain. However, although many real-world networks are spatially embedded and their links have
characteristics length such as pipelines, power lines or ground transportation lines they are not
homogeneous but rather heterogeneous. For example, density of links within cities are
significantly higher than between cities. Here we develop and study numerically and analytically a
similar realistic heterogeneous spatial modular model using percolation process to better
understand the effect of heterogeneity on such networks. The model assumes that inside a city
there are many lines connecting different locations, while long lines between the cities are sparse
and usually directly connecting only a few nearest neighbours cities in a two dimensional plane.
We find that our heterogeneous model experiences two distinct continuous transitions, one when
the cities disconnect from each other and the second when each city breaks apart. This is in
contrast to the homogeneous model where a single transition is found. Although the critical
threshold for site percolation in 2D grid remains an open question we analytically find the critical
threshold for site percolation in this model. In addition, it has been found that the homogeneous
model experience a single transition having a unique phenomenon called critical stretching where a
geometric crossover from random to spatial structure in different scales found to stretch
non-linearly with the characteristic length at criticality. In marked contrast, we show here that the
heterogeneous model does not experience such a phenomenon indicating that critical stretching
strongly depends on the network structure.

In the past two decades network science has provided a unique tool for analyzing complex systems by
introducing novel frameworks for predicting and understanding collective phenomena in various systems
such as the brain [1, 2], climate networks [3—5], epidemic spreading [6, 7] and infrastructures [8—10].

One of the main tools used in networks science for describing functionality of a complex system is
percolation theory [11, 12]. Percolation theory describes a physical process in which one randomly removes
a fraction 1 — p of nodes or edges from the network and analyses the network behaviour under such
removal. At a critical point p the system breaks apart and only small clusters remains. Thus, the system’s
functionality is usually described by the giant component which exist above criticality, p., and not below.

One of the most important properties of a network is its structure. The structure of a network can vary
in many ways such as interplay between random to spatial structure [13—18], different degree distribution
[19], clustering [20, 21] or community structure [22—25] which have a significant effect on the phenomena
that appear on it.

Recently, a homogeneous spatial network model was developed for studying spatial embedded networks
with characteristic link length such as power-grids, transportation systems and the brain. However,
although many real-world networks have spatial embedding and a characteristics length such as pipelines,
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Figure 1. Illustration of the model. The heterogeneous spatial modular model represents a structure of a network inside cities
and between cities. Inside a city it is easy the get from one place to another (green links) like Erd§s—Rényi network having
random like structure while travelling from one city to another is usually possible between neighbouring cities having spatial like
structure (blue links).

power lines or ground transportation lines [13] they are not homogeneous but rather heterogeneous since
within the same city (module) lines are dense and connect arbitrary locations, while there are few lines
between different cities, which are embedded in two dimensional space and usually limited to a few nearest
neighbours. Therefore a heterogeneous spatial modular network model with characteristic link length is
needed to better understand the effect of heterogeneity on such networks.

In this paper we study a heterogeneous spatial modular model in 2D [26], see figure 1, to better describe
heterogeneous infrastructures and study its resilience numerically and analytically using percolation theory.
We find that such networks experience two phase transitions one at pipaﬁal when the cities start to become
disconnected from one another and the second at pE® when each city breaks apart itself. Although the
critical threshold for site percolation in 2D grid is still an open question and is found only numerically [27],
here we find analytically pP*™ for site percolation for this model by utilizing the well-known threshold of
bond percolation in 2D. The two transitions are in contrast with a similar but homogeneous model [13, 15,
17, 18] where a single p. is found.

The modular structure of the model is also relevant for other complex systems such as the brain network
which has been found to be organized as a modular structure [28, 29] and its stability depends on the
structure of each module and the connections between them [30].

In addition, a new phenomena called critical stretching has been found in the homogeneous model [18].
In this model a geometric crossover from mean-field behaviour in small scales to spatial in large scales has
been observed. It was found that at criticality the mean-field regime stretches non-linearly with the
characteristic scale. This model is similar to ours since both have mean-field behaviour on small scales and
spatial on large scales. However, they are different in the assignment of the links. Our model has
heterogeneous structure since it is divided into communities or cities whereas the model in [18] has an
homogeneous structure. Thus, we will refer to them as the heterogeneous model here and the homogeneous
model in [18]. We find that while in the homogeneous structure one observes critical stretching, in contrast,
the heterogeneous structure studied here, do not experience such a phenomena due to the two distinct
transitions.

1. Heterogeneous and homogeneous spatial models

The heterogeneous spatial modular model [26] represents an infrastructure as a 2-dimensional square
lattice with N = L x L lattice sites, where L is linear size of the lattice. We assume that the lattice sites are
the nodes of the heterogeneous network. However, the edges of the heterogeneous nodes do not coincide
with the lattice bonds. The lattice is divided into a smaller squares of linear size ( representing
communities, e.g., cities. The number nodes in each community is N. = ¢ x (. Thus, the number of
communities in our model is # = N/N. = L?/¢*. We assume that inside a community it is easy to get from
one node to another and therefore each community will be connected randomly as an Erdés—Rényi
network (ER) with average degree kinira. In contrast, it is difficult to get from one community to the next.
Thus, we assume that in addition to intra-links linking the nodes in the same community there are much
fewer inter-links which connect the nodes located in neighbouring communities. We assume that each node
has inter-links distributed according to a Poisson distribution with the average degree kinter. Each
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community has four nearest neighbouring communities occupying adjacent squares on the lattice.

We assume that the inter-links emanating from a community connect it randomly selected nodes in the
four neighbouring communities. This assumption represents the fact that roads or railways connect
neighbouring cities. For brevity of notations we denote K = kinr, and Q = kingerC 2 where Q is the average
number of inter-links emanating from each community.

The homogeneous model studied in [13, 15, 17, 18] assumes two dimensional grid size L x L with L
being the lattice length. The construction of the model consists of the following stages: (i) a single node is
randomly chosen. (ii) An edge length is randomly drawn from an exponential distribution
P(r) ~ exp(—(/r) where  is the characteristic length of the distribution. (iii) The node is being connected
to a random node at the distance of the drawn edge in (ii). These stages are repeated until the average
degree K is achieved.

These two models have the same two important limits. For ( — L the models generate an ER while for
L > ¢ — 0 strong spatial (regular lattice) behaviour is observed. Moreover, for intermediate values of
L > ¢ > 0 mean-field behaviour is observed in small scales and spatial behaviour on large scales. The main
difference between the models is the structure, heterogeneous versus homogeneous and as we show below
in these intermediate scales (between mean-field and spatial) they behave very differently.

2. Analytical and numerical results of percolation in the heterogeneous model

The homogeneous model has been studied in [18] so here we will study the heterogeneous spatial modular
model. We study the model under percolation process at which a fraction 1 — p of nodes are randomly
removed from the network. The behaviour of the largest cluster size, P, as function of p for different
values of ¢ but fixed kiper = 0.001 and fixed lattice size L = 10 is shown in figure 2(a). As expected, for

¢ — L the behaviour of the network approaches the behaviour of a regular ER with pf® = 1/K = 1/4. Tt
can be seen that for any value of ¢ > 1 the graph P..(p) has two inflection points corresponding to the two
maxima of the slope dIn P, /dp in figure 2(c). While the position of the maximum near p = pER does not
depend on ¢, the position of the second (larger) one decreases with (, and at large it almost coalesces with
the first one. As we will see, this second maximum corresponds to the bond percolation threshold of the
network of communities, which has a topology of the square lattice. Near this maximum the network
breaks into individual communities, isolated from each other, so the giant component of the entire network
disappears but each community remains well connected and their largest clusters remain of the order of ¢*.
We will call these clusters local giant components. Finally, near the first (lower p.) maximum,
corresponding to the percolation threshold of the ER the local giant components disappear as well and the
average largest cluster size swiftly goes to zero as p decreases below pER. This behaviour is in marked
contrast to the homogeneous model which experience a single transition threshold for any value of ¢
(figures 2(b) and (d)).

To demonstrate that the second inflection point (at higher p) corresponds to the bond percolation
transition on the square lattice, we compute the position of the inflection points for different ¢ analytically
using the well know fact that the bond-percolation threshold for a square lattice, p, = 1/2 [12]. Here we
will use py, to find the value of pF*™ at which the communities disconnect from each other. The probability
that one of Q interlinks emanating from a given community connects to one of its 4 neighbours is 1/4.
Therefore, the number k of the interlinks connecting these two neighbouring communities is distributed
with a binomial distribution P¢(Q) = (1/ 4)k(3 / 4)Q’kC’é. The probability that a randomly chosen node will
be connected to the local giant component of each community is given by the giant component of ER
network [11, 31],

G:p(l—exp’KG)). (1)

For small kineer, the communities are weakly connected to each other similarly to weakly interacting
networks [32]. In order for an inter-link connecting two neighbouring communities to participate in
building the global giant component of the network, its both ends should belong to the local giant
components of these two communities. This is the finite cluster of size s < ¢* within a community will
have a very low chance to have more than one interlink if s X kiner << 1. However, finite clusters within
communities can still participate in the global connectivity once kiner is large enough and their size s is such
that s X kiner &~ 1. Thus, assuming small Kineer, the probability that an inter-link participates in the global
connectivity is G* and the probability that two neighbouring communities will not have a single inter-link
connecting their local giant components is

P =Y PUQ( — G =[3/4+1/4(1 - G)]2. (2)
k

3
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Figure 2. Simulations of the largest cluster Py, as a function of p for different values of ¢ on semi log scale with K = 4 and kiner
=1072. (a) The heterogeneous model. Two distinct transitions are observed. The first (higher) transition at p?’a"“l of the lattice is
obtained from equation (4) and is denoted by black x. The second (lower) transition occurs when the small ER communities
break apart at p® = 1/K. (c) Both transitions can be clearly seen in the maximal values of the derivative of the giant component.
(b) The homogeneous model with K = 4. Only one transition is observed in contrast to the heterogeneous model. (d) The single
transition (single maximal values) can be clearly seen in the derivative.

At the lattice percolation threshold, the probability that two neighbouring communities do not have a bond

connecting them, py, should be 1/2, the bond percolation threshold. In this case, the size of each surviving
community, G(pP*™"), is large since pE® < pP*™ and each community itself is above criticality. G(pF™™)

can be found analytically directly from equation (2),

G(pPF) = 2¢/1 —2-1/Q, (3)
spatial

and the percolation threshold pc™ " where the communities disconnect from one another can be obtained

using equations (1) and (3),
spatial __ 2v1— 2-1/Q

. 4
¢ 1 — exp(—2Kv1 —2-1/Q) )
Indeed, in the limit of { — 0o, equation (3) takes the form
. 2 [In2 1
G(pspatlal) ~ Z - (5)

‘ C E - CV kinter,

and pP"" = pER — 1/K.
Simulation and theory for pf;paﬁal for different values of ( and kiy., are shown in figure 3. The theory is
obtained directly from equation (4) is seen to be in excellent agreement with simulations. In the limit
¢ — oo the network approaches the behaviour of a regular ER and equation (4) yields p¢” atial _ pER — 1 /K.
The percolation threshold pF**™! depends only on the average inter-degree of a city Q as predicated by
equation (4). In figure 4(a) we show P, for different values of ¢ while keeping Q fixed. Indeed, as
predicated, pzpaflal does not change. However, as ( increases while Q is fixed in the interval of
PER < p < pP* the sizes of local giant components are increasing as ¢*. Thus, although the global giant
component does not exist in this interval, the fraction of nodes in the largest cluster grows as ¢*/L2. In

addition, when ¢ becomes comparable to L the lattice of communities becomes very small and the spatial
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Figure3. (a) G(pzpa[ial) and (b) p‘zpma] as a function of ¢ for various values of kin: with K = 4. The circles represent simulation
results and the dashed lines are the theory obtained from (a) equation (3) and (b) equation (4). In the limit of { — oo the system

approaches a single ER network and p"*! approaches p** = 1/K.
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Figure4. (a) The giant component P, as a function of p for different values of ¢ on semi log scale with K = 4 and Q = 10.
pipaml depends only on Q (equation (4)). The inset shows finite size effect in the p < pE*(= 0.25) regime. Indeed, as N increases
P, goes to zero (N = 10°, 107, 105—red, green and blue respectively) in this regime. (b) p*™ as a function of 1/(kiner + K) for

K = 4 and large values of ki, for different values of ¢. For large values of ¢ the network is similar to ER networks and therefor
PP = 1/ (kiper + K). Here L = 10%.

transition becomes less pronounced due to finite size effects. In the p < pER regime a non-vanishing largest
cluster seem to appear. However, this only due to finite size effect. As N increases P,, — 0 as seen in the
inset of figure 4(a).

So far, the theoretical analysis assumed realistic small kiner which means that the communities are
weakly connected to each other. This leads to the spatial transition described by equations (1) and (2) when
the communities become disconnected from each other and then their local giant components disappear as
p farther decreases at pER® = 1/K. However, for large ki, this description is not valid since the
communities are strongly connected to each other and therefore even small clusters within the communities
will participate in the global connectivity. Thus, the transition point where the communities disconnect
from each other is the same as when each community breaks. The formalism presented in reference [26]

shows that for ER local networks kineer simply adds the K in equation (1) giving pER = 1/(K + kineer) as
shown in figure 4(b).

3. Geometric crossover and stretching

The critical stretching phenomena introduced in reference [18] is observed at the critical percolation
threshold of the homogeneous model. Since the homogeneous model has only one threshold (figures 2(b)
and (d)), both the random structure in small scale and the spatial structure in large scale are at criticality.
This leads to two different fractal dimensions in both small and large scales with a geometric crossover at
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Figure 5. Comparing the geometric crossover between the homogeneous and heterogeneous models in 2D with K = 4. The
mass scaling at p = 1 for the (a) homogeneous model and (b) the heterogeneous model with kiyer = 10", Both large and small
scales are not at criticality leading to a similar geometric crossover at r,(¢) = ¢ from infinite dimension in small scales (small
world) to 2D in large scale. (c) The critical stretching phenomena in the homogeneous model at p = p.. Both large and small
scales are at criticality and the random structure in small scales stretches non-linearly with ¢ as r.(¢) = ¢*/?. A geometric
crossover is observed at 7. (¢) from d}'* = 4 in small scale to df® = 91/48 in large scale since both large and small scales are at
criticality. (d) Absence of critical stretching phenomena in the heterogeneous model at p = pip"‘“al with kiper = 1074, Since
pPial S pER only large scales is at criticality leading to a geometric crossover at r,(¢) = ¢ from infinite dimension in small scales
to d?° = 91/48 in large scales without critical stretching. Here L = 10*.

r.(¢) from dMF = 4 for r < r.(¢) to d?® = 91/48 for r > r.(¢) [12] where r,(¢) is the crossover point. The
Ginsburg criterion [33] can be applied to identify the crossover point and is given by p>~%/2¢% >> 1 where

p = p/pec — 1 is the displacement of p from its critical value. In 2D the crossover should occur at p, = ¢!
which leads to r.({) = ¢ 3/2 as described in detail in reference [18]. This non-linear dependence of r.(()
with ( is the critical stretching phenomena which means that the random structure at small scales stretches
at criticality in a non-linear fashion with ¢. The mass of the giant component M, (¢) at p, can also evaluated
using consistency arguments giving M..(¢) = ¢’ 71/288 Thus, we can write the ansatz,

4

w0~ (mw) (wia) ®
where M (x) oc x 1Y/ for x > 1 and constant otherwise. The scaling relation in equation (6) is supported
by simulation presented in figure 5(c) showing that indeed the random structure at small scales stretches at
criticality.

In contrast to the above discussion, at p = 1, the homogeneous model neither in small nor in large
scales is at criticality. Thus, a geometric crossover is expected and observed from infinite dimension in small
scales (small world) to two dimension in large scales. The crossover point () = ( scales linearly with ¢
and no stretching is observed as seen in figure 5(a). The mass at the crossover point scales as M, () = ¢ 2,

In contrast to the homogeneous model, the heterogeneous model has two percolation transitions
(figures 2(a) and (c)). At pipaaal only the large scale network is at criticality and the small scale networks are
not since ptR < pipaaal. Thus, we observe 2D fractal dimension at large scales and infinite dimension at
small scales. Since small scales are not at criticality they do not stretch and r,.(¢) = (.
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The mass of the giant component at the crossover M..((¢) is the size of the local giant component at pipadal.

From equation (5) we obtain M,(() ~ G(pf}’adal)c2 ~ (/v/(kinter) as supported by simulation in figure 5(d).

At p = 1 both large and small scales are not at criticality similar to the homogeneous model. We observe
a geometric crossover at r.(¢) = ¢ from infinite dimension at small scales to 2D at large scales without
critical stretching as shown in figure 5(b).

4. Summary and discussion

In this work we introduced a spatial modular model for spatial heterogeneous infrastructure like a system of
pipelines, power lines or ground transportation lines. In small scales this model has random ER-like
behaviour since inside a city the lines may connect arbitrary locations with fast connections, while on large
scales the model has spatial behaviour because the lines between cities usually connect only nearest
neighbours embedded in two dimensional space. This model experience two distinct transitions, one at
pP! when the cities disconnects from one another and the other pER when each city breaks apart.

We compared our model to a similar homogeneous model under percolation process. Away from
criticality both models show a geometric crossover at 7, ({) = ¢ from infinite dimension to two dimension.
However, since the homogeneous model has a single p, at p = p. both large and small scales are at
criticality leading to a geometric crossover from mean-field fractal dimension to 2D fractal dimension at
r.(¢) = ¢*/* and critical stretching is observed. However, since in the heterogeneous model pipaﬁal > pER at
p= pipatial only large scales are at criticality and small scales do not. This leads to a geometric crossover
from infinite dimension to 2D fractal dimension without critical stretching indicating that in order to
observe critical stretching the system has to be at criticality in both large and small scales.
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