
PHYSICAL REVIEW E 100, 032310 (2019)

Nontrivial resource requirement in the early stage for containment of epidemics

Xiaolong Chen,1,2,3,* Tianshou Zhou,4,* Ling Feng,5,6,* Junhao Liang,4 Fredrik Liljeros,7 Shlomo Havlin,8 and Yanqing Hu1,3,†

1School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
2Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 611731, China

3Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China
4School of Mathematics, Sun Yat-sen University, Guangzhou 510006, China

5Institute of High Performance Computing, A*STAR, 138632 Singapore
6Department of Physics, National University of Singapore, 117551 Singapore

7Department of Sociology, Stockholm University, 17177 Stockholm, Sweden
8Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

(Received 13 October 2018; revised manuscript received 10 July 2019; published 23 September 2019)

During epidemic control, containment of the disease is usually achieved through increasing a devoted resource
to reduce the infectiousness. However, the impact of this resource expenditure has not been studied quantitatively.
For disease spread, the recovery rate can be positively correlated with the average amount of resource devoted
to infected individuals. By incorporating this relation we build a novel model and find that insufficient resource
leads to an abrupt increase in the infected population size, which is in marked contrast with the continuous
phase transitions believed previously. Counterintuitively, this abrupt phase transition is more pronounced in less
contagious diseases. Furthermore, we find that even for a single infection source, the public resource needs
to be available in a significant amount, which is proportional to the total population size, to ensure epidemic
containment. Our findings provide a theoretical foundation for efficient epidemic containment strategies in the
early stage.
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I. INTRODUCTION

Epidemic outbreaks have detrimental impacts globally on
both public health and social activities [1–4]. Understanding
of the mechanism of epidemic spreading involved with hu-
man activities is a crucial issue [5–9]. Previous studies on
epidemic spreading have mostly focused on the impact of
contact network structure [10–14], individual mobility [7,8],
and various other aspects of the spreading process [15–22].
Usually, the spreading power has been considered to be
constant throughout the entire spreading process. However,
the spreading power is not constant, as commonly assumed,
but highly influenced by the resources invested to contain
the spreading. The effect of resource-dependent spreading
power has been largely overlooked in the past, in contrary
to the real dynamics. Recently, the impact of the infected
population on the remaining available human resources and
its influence on epidemics have been studied [23], and it has
been found that explosive epidemic outbreaks are due to the
reduced productivity output from the total population, when
a significant portion of the population is infected. However,
in modern societies, it is extremely rare for diseases to be
so widespread, due to heightened government surveillance
[24,25] and prompt containment actions [7,26] of their spread-
ing at the early stage. Yet diseases can still be fatal and affect
the lives of thousands or even millions of people. Thus, the
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amount of public resource expenditure during the early stage
is of critical concern.

The devoted resources can have different influences on
epidemic spreading. But many of these different influences
will effectively reduce the infectiousness of a disease in a
population. For example, they can shorten the duration of the
infected or identify a higher fraction of the infected popu-
lation that requires intervention and, consequently, decrease
the spreading power. The duration of infectiousness is not
necessarily the same as the duration of being sick. Infected
individuals may become infectious before showing any symp-
toms such as those with the yearly flu. Some infections may
not show any symptoms, such as Chlamydia trichomatis [27].
The possibility of shortening the duration of contagiousness
varies for different diseases and can be medical, such as quick
identification, quarantine, and cure of the infected population,
as well as social, such as good insurance for loss of income,
which may motivate the staff at a workplace to stay at home
when sick and hence shorten the duration of infectiousness at
the workplace. Identifying a higher fraction of the infected
can be achieved through subsidization of screening costs.
Common to most methods is that their implementation has a
cost. Hence, it greatly depends on the devoted resource. This
is critical, in particular, in the case of fatal diseases, which
usually attract more public attention and more resources in
their containment. In this work we simplify the effects of an
increased resource amount into a reduced infectious rate and
study its impact on the dynamics of the generic susceptible-
infected-susceptible (SIS) model, as well as the spreading
outcome.
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II. MODEL AND ANALYSIS

A. Resource-dependent recovery rate

Regarding the relationship between the devoted resource
R and the recovery rate μ, on one hand, if the amount of
the resource is limited, i.e., R is a fixed value, the overall
recovery rate of the system is closely related to the infected
population size ρ. Namely, the larger the infected population,
the less resource per infected individual to share and, hence,
the smaller the chance that the infected individual will recover.
On the other hand, if the quantity of the infected population
is constant at the moment, the recovery rate will be improved
by properly increasing the investment of resource. This im-
plies that the recovery rate function μ(R, ρ) is a monotonic
increasing function of R and a decreasing function of ρ,
such that the more total resource (or fewer infected people
sharing the resource), the faster the recovery rate. Moreover,
the value of μ should be constrained between 0 and 1 when
R and ρ are positive. These two basic properties reflect the
relations between R, ρ, and recovery rate. One example is
cholera. From the recorded data in 1996 over 72 countries,
the recovery rate μ of cholera—defined as 1 − CFR (case
fatality rate)—is negatively related to the infected population
size by average wealth per capita (PPP; purchasing power
parity). Such a relationship between the recovery rate μ and
the devoted resource R can be approximately fitted into the
functional form of μ(t ) (see Fig. 1),

μ(t ) = e−ρ(t )c/R, (1)

where c is the coefficient representing the relative importance
of R and ρ. black Note that cholera spreads through contam-
inated water and food, such that it is not a direct human-to-
human spreading process. Yet the recovery rate data support
our intuitive assumption that the recovery rate is positively
influenced by social resources.

Alternatively, we can also consider the recovery rate from
the perspective of successfully identifying and quarantining
the infected population. As we know, one of the most efficient
ways to contain disease spreading is to isolate the infected
population in the early stage of the disease outbreak. To
achieve this purpose, large amounts of social and medical
resources are needed to screen the population at scale. We
assume that if �R resource is devoted to the population
for screening and quarantining, the chance that an infected
individual will be identified and successfully quarantined is
c�R
ρ(t ) . Thus with the total resource R devoted, if we consider the
recovery rate μ(t ) as successful identification and quarantine
of the infected, it can be written as

μ(t ) = 1 −
(

1 − c�R

ρ(t )

) R
�R

. (2)

In the limit �R is indefinitely small, i.e., �R → 0, we have

μ(t ) = lim
�R→0

1 −
(

1 − c�R

ρ(t )

) R
�R

= 1 − e
−cR
ρ(t ) . (3)

Note that both forms of recovery rate [Eqs. (1) and (3)] are
proportional to the amount of devoted resource and inversely
proportional to the size of the infected population and are
constrained in the range (0,1). And the usage of either one

FIG. 1. Relationship between the logarithm of the cholera recov-
ery rate μ and the size of the infected population ρ divided by the
PPP in 1996, during which cholera was widespread, with 144 727
infected cases and 6418 deaths. Each yellow circle corresponds to
a particular country. Green squares represent the average values of
each bin of different ρ/PPP values after using the bootstrap method
[28] to sample, which is suitable for the small sample size here.
Then we use linear regression to fit these average values. The slope
of the fitted straight line is −0.012 in the axis unit of 10−8 and
the fitting is statistically significant, with a correlation coefficient
R2 = 0.9723 and a p value of 2.785×10−5 (fitting the average value;
filled squares). There is a clear negative correlation between the
logarithmic value of the recovery rate and the density of the infected
population. The straight orange line is thus Eq. (1) with parameter
c = −0.012.

does not cause a qualitative difference as shown in Fig. 2. Here
we want to qualitatively show the positive relation between
the resources per infected shared (R/ρ) and the curative rate
rather than the exact quantitative relation. Thus, without loss
of generality, in this paper we only discuss Eq. (1), for its
simplicity as well as some empirical evidence. Additionally,
to illustrate qualitatively the effect of resource R on disease
spreading, we use the generic spreading model with SIS

FIG. 2. Comparison of the properties of the recovery functions
given by Eqs. (1) and (3). (a) Recovery rate μ as a function of
resource R with a fixed infected population ρ = 0.2. (b) Recovery
rate μ as a function of the infected population ρ with fixed resource
R = 2. The two equations give qualitatively similar monotonic trends
and both have μ values bounded in (0,1).
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dynamics [10–13], which is among those commonly used in
the literature for disease spreading. To simulate the effect of
a fixed amount of resources, the recovery rate varies with
time depending on the average amount of resource that each
infected individual gets.

B. Theoretical analysis

Considering a system of N individuals embedded in a con-
tact network, an infected individual (or node) has a probability
β of spreading the disease to a neighbor with whom he or
she shares a link. At the same time, the infected node has a
probability of μ(t ) = e−ρ(t )/R [corresponding to Eq. (1) with
c = 1] of recovering to a susceptible state, such that it does
not carry the disease until it is reinfected again. Therefore
the probability pi(t ) that a node i is infected at time t can be
described by the dynamical equation

d pi(t )

dt
= (1 − qi(t ))(1 − pi(t )) − e−ρ(t )/R pi(t ), (4)

where qi(t ) = ∏N
j=1(1 − ai jβp j (t )) is the probability that

node i is not infected by any of its neighbors at time t . The
parameter ai j denotes the adjacency matrix of the contact
network and has a binary value. It is 1 when node j shares
a link with node i and 0 otherwise. The infected population
fraction of the whole population is ρ(t ) = 1

N

∑N
i=1 pi(t ) at

time t . One of the main quantities we wish to address using
this equation is to study the infected population size at steady
state, i.e., ρ(∞), and how it changes with the total amount of
resource R.

To further analyze Eq. (4), we assume that the underlying
network has degree distribution P(k). With the mean-field
approximation, the dynamical equation, Eq. (4), can be re-
duced to

dρ(k, t )

dt
= (1 − (1 − β�)k )(1 − ρ(k, t )) − e−ρ(t )/Rρ(k, t )

≈ kβ�(1 − ρ(k, t )) − e−ρ(t )/Rρ(k, t ). (5)

The approximation on the right holds when β� is close to
0. Here, ρ(k, t ) is the infected fraction within the nodes with
degree k at time t . The first term [1 − (1 − β�)k )(1 − ρ(k, t )]
is the probability that a susceptible node with degree k gets
infected through at least one of its k neighbors. The second
term e−ρ(t )/Rρ(k, t ) is the probability that an infected node
will recover. � denotes the probability that a randomly chosen
edge leads to an infected node. When the degree correlation of
the network is not taken into consideration, � takes the form

� =
∑

k

kP(k)ρ(k, t )

〈k〉 . (6)

Now the total infected fraction ρ(t ) can be given by ρ(t ) =∑
k P(k)ρ(k, t ). In general, ρ(∞) cannot be analytically de-

duced from Eq. (5). However, in the following two typical
cases, ρ(∞) can be given analytically. The first case is
the homogeneous degree distribution with P(k) = δk,〈k〉, for
which every node has the same degree. The second case is the
heterogeneous power-law degree distribution P(k) = 2m2

k3 (we
mainly consider the case of exponent 3, for simplicity), where
m is the minimum degree of the nodes.

FIG. 3. Two-phase behavior with respect to the initial infection
fraction ρ(0). (a) Stability discussion from the potential energy per-
spective. Local minima correspond to stable steady states and local
maxima are unstable steady states. (b) Time evolution of ρ(t ) with
different initial values of ρ(0). Depending on the initial infection
fraction, the final infection fraction will converge to one of the two
stable points.

For the homogeneous case, the dynamical equation,
Eq. (5), can be reduced to

dρ(t )

dt
= (1 − (1 − βρ(t ))k )(1 − ρ(t )) − e−ρ(t )/Rρ(t ). (7)

Note that (1 − βρ)k ≈ 1 − kβρ for βρ � 1, Eq. (7), can be
further reduced to

dρ(t )

dt
= kβρ(t )(1 − ρ(t )) − e−ρ(t )/Rρ(t ). (8)

The final infected population is the solution of Eq. (8) at
steady state determined by dρ(t )

dt = 0. Yet unlike the typical
SIS dynamics, Eq. (8) can have multiple steady states. One
can visualize the system by introducing a potential function
[29] constructed from Eq. (8) as

E (ρ) = −
∫

dρ(t )

dt
dρ. (9)

This system has one unstable (local maximum or critical)
point ρc and two stable fixed (local minimum) points, ρl (∞)
and ρh(∞), which are separated by the unstable point ρc as
indicated in Fig. 3. As shown in Fig. 3(a), if ρ(0) is to the left
of the critical point ρc, the infected population size evolves to
the left stable point at ρl (∞) = 0; otherwise the system will
evolve to the right stable point of ρh(∞) = 0.89. Therefore
when R is fixed, the two-phase behavior of the final infection
population ρ(∞) dependent on the initial infected population
ρ(0) is separated by the critical ρc as shown in Fig. 3(b). That
is, for a given resource value R, when ρ(0) < ρc the epidemic
can be well controlled; otherwise the epidemic will outbreak
and influence a significant fraction of the population. On the
other hand, this also indicates the existence of a critical value
Rc for the resource parameter R for each initial condition ρ(0).
Rc can be obtained by finding the local maximum point though
the following two equations:

ρ̇(t ) = dρ(t )

dt

∣∣∣∣
ρ(0)

= 0,

∂ρ̇(t )

∂ρ

∣∣∣∣
ρ(0)

> 0.

(10)
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FIG. 4. Catastrophic epidemic spread due to inadequate resource R simulated on the real sexual contact network. (a, b) The simulation
is carried out with ρ(0) = 0.1 and β = 0.06. Yellow, red, and blue nodes are the initially infected, finally infected, and susceptible nodes,
respectively. Near the critical point Rc ≈ 0.135, with a small change in R, from 0.13 to 0.14, the infected population decreases drastically.
(c) The critical amount of resource Rc that separates the two phases is dependent on the initial fraction of the infected population ρ(0). There
is a critical Rc such that when R < Rc the disease would spread to a significant fraction of the population as shown in region I, whereas when
R > Rc the disease would be well contained within a negligible fraction of the population as shown in controllable region II. As ρ(0) increases,
the minimum amount of resource Rc also increases to ensure that the disease is not widespread.

When the resource is below Rc, the disease will be
widespread; otherwise it will be effectively contained.

For the heterogeneous case, at the steady state of Eq. (5),
we have ρ(k, t ) = βk�

e−ρ(t )/R+βk�
. Using the expression of �

in Eq. (6) and P(k) = 2m2

k3 , considering the large node
size limit, and using the integral to approximate the sum-
mation over k, we obtain the self-consistent equation for
computing �:

� =
∫ ∞

m

m�β

k(e−ρ(t )/R + βk�)
dk. (11)

The integral can be computed directly to yield � = ϕ

eϕ−1 ,

where ϕ = 2e−ρ(t )/R

β〈k〉 . The total fraction of infected nodes can

be obtained by ρ(t ) = ∑∞
k=m P(k)ρ(k, t ). Substituting Eq. (5)

into it, we have the equation for the fraction of infected nodes
as

dρ(t )

dt
= 〈k〉β�(1 − �) − e−ρ(t )/Rρ(t ), (12)

which gives ρ(t ) = 〈k〉β�(1−�)
e−ρ/R at steady state. Thus, we get the

final result that ρ is determined by the self-consistent equation
ρ = 	(ρ) with 	(ρ) = 2(eϕ−ϕ−1)

(eϕ−1)2 . Moreover, it can be shown
that 	′(ρ0) < 1 implies that the infected state ρ0 is stable,
while 	′(ρ0) > 1 implies that it is unstable. Since the above
analysis is not limited to the specific functional form of the
recovery rate μ(t ), it is easy to generalize the above analysis to
the case of a general recovery rate (see the Appendix, Sec. B,
for details).

III. RESULTS

A. Critical resource amount

To illustrate the impact of resources, we use the real
sexual contact network [5,20] as the underlying network and
simulate the resource-dependent spreading dynamics accord-
ing to Eq. (4). We also use other empirical and theoretical

networks comprising both heterogeneous and homogeneous
degree distributions for more comprehensive investigations.
Surprisingly, the model shows a bimodal outcome depending
on the resource R available. As shown in Fig. 4, either the
final infected population is extremely widespread to a con-
siderable fraction of the network or only a few nodes are
being infected. At a critical point of resource amount Rc, a
tiny change in the resource variable R would make a huge
difference in ρ(∞). Such an abrupt transition indicates that
adequate critical resource is needed to fight the disease spread,
since it can bring a potentially catastrophic epidemic down
to a tiny outbreak (see Fig. 4). This is a signature of the
first-order phase transition related to the resource available.
It implies that the public resource expenditure has a critical
behavior: When it is above this critical value, the disease can
be effectively eradicated or contained; otherwise it cannot
contain the outbreak but only slightly reduce the infected
population size. This abrupt transition is our first main finding.
In addition to this example of an abrupt transition found in the
real sexual contact network, we find the same abrupt transition
due to resource R in several other typical social networks, in-
cluding the New Orleans Facebook network, Twitter network,
and Weibo network, which could approximate real contact
networks, as well as artificial networks like the Erdös-Rényi
and scale-free networks (see Fig. 5).

We show the abrupt jump size J (Rc) vs β for the real sexual
contact network in Fig. 6(a) and that for the other networks
in Fig. 5(c). One can see that when β is large enough, the
jump size J (Rc) at the critical resource value Rc diminishes to
0. This means that for large β values, the infected population
size drops continuously with increases in the devoted resource
but discontinuously when β is small. This phenomenon can
also be found in other empirical networks (see the Appendix,
Sec. A, for details) and random networks (see Fig. 7). The
boundary value βb is the lowest β value for which the infected
population changes continuously vs the resource amount at
Rc [i.e., the points where J (Rc) = 0 in Fig. 6(a) and for other
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FIG. 5. Catastrophic outbreaks in different networks due to resource inadequacy. With an increasing amount of resource R devoted to
constraint of the spreading, the final infected population size ρ(∞) suddenly drops to much lower values for both (a) real networks and
(b) artificial networks. The initial infection fraction ρ(0) = 0.4 and spreading probability β = 0.01. Symbols and dashed lines represent
simulation and theory results, respectively. (c) Size of the jump J (Rc ) in ρ(∞) at the critical resource value Rc. If J (Rc ) = 0, it means there
is a continuous change in the outbreak size with increasing amount of resource devoted. For both real and artificial networks, as the infection
rate β increases, the catastrophic jump behavior disappears, switching to a continuous phase.

FIG. 6. Nontriviality of the critical resource amount and multiphase behaviors. (a) Size of the jump J (Rc ) in ρ(∞) at the critical resource
value Rc as a function of β in the sexual contact network. When the infection rate β is larger than βb, the catastrophic jump behavior disappears,
switching to a continuous phase. (b) For an epidemic disease even with a fraction of initial spreaders close to 0, Rc is significantly larger than
0. This means that even if there is only one initial spreader of the disease, there is a need to set aside at least Rc amount of resource to contain
it. Here β = 0.01 in all simulations. (c–f) Critical resource Rc vs β when ρ(0) → 0 [ρ(0) is very small] for empirical networks and random
networks. We divide different phase regions of the sexual contact network (d), the scale-free (SF) network (e), and the random regular (RR)
network (f). While the RR network has only two phases—one having a first-order transition and one only continuous change—the sexual
contact network and SF network have an additional phase of hybrid transition, in which the infected population abruptly jumps from a nonzero
value to a larger value.
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FIG. 7. Discontinuous jump and continuous change of the
steady-state infection fraction ρ(∞) on the social networks (a) Face-
book and (b) Twitter and random networks that are (c) scale-free
(SF) and (d) random regular (RR). Red, green, and blue symbols
represent simulation results at increasing values of β. As β increases,
the abrupt jump in ρ(∞) disappears. When β is small (red), we
see a sudden drop in the steady-state infection fraction ρ(∞) as
the resource R increases. There is a difference among the networks.
While the Facebook and RR networks show a drop to ρ(∞) = 0,
meaning the disease is eradicated, Twitter and the SF network show
a drop to ρ(∞) > 0, and ρ(∞) continues to decrease slowly after
that, which corresponds to a hybrid phase transition behavior. As the
β value becomes larger (green and blue), the abrupt jump disappears,
and the change in ρ(∞) becomes continuous with increasing R. For
all of the networks studied here, the abrupt change disappears with
increasing β value. The network sizes are both N = 20 000 in the SF
network and random regular network. The minimum and maximum
node degrees are kmin = 10 and kmax = 300 for the SF network.

networks in Fig. 5(c)]. The origin of this first-order phase
transition phenomenon can be understood from the theoretical
analysis in Sec. II B.

B. Nontriviality of resource amount and multiphase behaviors

Our second main finding concerns heterogenous networks
like many real contact networks [5,9,20] having approximately
scale-free degree distributions. In these networks, even if there
is a single initial infected node [ρ(0) → 0], a significant
amount of resource is required to contain the disease. This
is shown in Fig. 6(b) as the variation of Rc vs the initial
infection fraction ρ(0) for the real social network. For many
real networks, the value of Rc at ρ(0) → 0 is significantly
larger than 0. This important phenomenon can be understood
from Fig. 8(b), as the nonzero solution is obtained from
the intersection of the stable (green) and unstable (yellow)
solution lines (details in caption).

Our third main result is that we find three types of phase
transitions: first order, hybrid, and continuous. The catas-
trophic transitions such as the first-order and hybrid phase
transitions, from spreading dynamics to nonspreading, are
induced by the low spreading probability β, which usually

corresponds to fatal diseases [30,31]. Figures 6(d) and 6(e)
show the three distinct phase transition regimes determined
by the value of β for the sexual contact network and the
scale-free network. The three phase regimes are separated by
βc and βb. Here βc is the critical transmission probability in
the original SIS dynamics [10] with the recovery rate equal to
1 (corresponding to R = +∞ in our model). In this scenario,
a disease needs to have a β larger than βc to spread. Therefore
when β < βc, increasing resource R can always eradicate the
disease spread. Hence β < βc is the region of the first-order
phase transition, corresponding to Figs. 8(a) and 8(d). When
β > βb, the infected fraction changes continuously with R,
and we call this region the continuous phase, represented in
Figs. 8(c) and 8(f). The most interesting region is βc < β <

βb. In this region, since β > βc, the disease can never be
totally removed (even for R = +∞) from the population. At
the same time, β < βb means that as we increase resource R,
the steady state ρ(∞) will at some point jump from the upper
solution to the lower solution [as shown in Figs. 8(b) and 8(e)].
We refer to this region as the hybrid phase.

C. Phase transition regimes

Figure 6(e) illustrates the separation of the three distinct
phase regimes in the scale-free network and this can also be
found in many empirical networks [see Figs. 6(c) and 6(d)].
To investigate the relationship between the presence of these
three phases and the degree heterogeneity of the network, we
carry out further analysis on scale-free networks with different
degree distribution exponents γ , which determine the degree
heterogeneity. As shown in Fig. 9(a), for the same value of
β, as the degree heterogeneity decreases (with increasing γ ),
the system evolves from first order to the hybrid phase and,
eventually, to a continuous phase. We note that when γ is
small, the three phases (continuous, hybrid, and first order)
can exist over different values of β, whereas the hybrid phase
disappears for large γ . Furthermore, Fig. 9(b) shows that the
hybrid phase does not exist in the Erdös-Rényi network.

IV. DISCUSSION

Diseases that are transmitted through water, food, etc., and
not directly though individuals, do not directly correspond to
the SIS spreading model. However, in their disease spread-
ing process, the effective infectivity will decrease with the
increase in the social resource input. This is due to various
social effects such as accelerating the discrimination and
isolation of the infected, providing clean water and food,
decreasing public exposure, improving the public’s sanitary
habits, and increasing the vaccination rate. In this work, we
consider all these effects as the increase in the recovery rate.
Obviously, this increased resource’s social effect, increased
recovery rate, or decreased spreading power is the same and
universal for many diseases (including influenza, HIV, etc.)
and is not subjected to the spreading dynamics of a specific
disease.

In order to further support the conclusions of our model
without direct evidence from disease transmission data, we
prove that the results reported in our paper are qualitatively
the same when the recovery rate increases monotonically with
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FIG. 8. (a–c) Dynamical stability origin of multiphase behaviors on the sexual contact network. Curves represent the numerical solutions
of ρ [i.e., the average of simulated pi(∞) values] in the dynamical Eq. (4) for different values of R. For both the first-order transition phase
(a) and the hybrid transition phase (b), the upper, orange curve represents the higher steady-state solutions, ρh(∞), and the bottom, green curve
represents the lower solutions, ρl (∞). The middle, dashed yellow curve shows the unstable steady-state solution ρc. Therefore if the initial
fraction of the infected population ρ(0) is above the yellow curve, the system will flow to a higher steady-state value on the orange curve;
otherwise, the system will flow to a lower steady-state value on the green curve. Thus, for each ρ value [initial value ρ(0), to be more accurate]
in the plot, the yellow curve defines the critical resource Rc. In (b), point S is the lowest point in the dashed yellow line, which means that it
leads to a nonzero value of Rc = 0.13 when the initial condition is ρ(0) ∈ (0, 0.11). Such a nonzero Rc when ρ(0) → 0 can be observed in
Fig. 6(d), point A (red). This also explains why in Fig. 6(b) the Rc value is flat between ρ(0) ∈ (0, 0.11). For the continuous phase (c), there
is only one stable solution of ρ. Hence there is no abrupt change in the dynamics. (d–f) Corresponding results on the scale-free network. The
same three types of dynamical stability phenomenon are found. The network parameters are N = 20 000, kmin = 10, kmax = 300, and power
exponent γ = 2.2.

the individual resource received. That is, we have proven that
for any recovery rate function whose value is in the range
(0,1) and is a monotonic increasing function of R

ρ
(average

shared resource per infectious individual), the main results in
the paper remain the same (see the theoretical analysis in the
Appendix).

FIG. 9. (a) Phase regimes of the system with different infection rates β and power-law exponents γ in scale-free networks. Both hybrid
and first-order phases show an abrupt jump in ρ(∞) when the amount of resource R decreases. The jump in the first-order phase starts from 0,
whereas the one in the hybrid phase starts from a positive value. As the infection rate increases, the system switches to a continuous phase in
which no abrupt jump is observed. (b) Phase regimes of the Erdös-Rényi network. The solid line represents the boundary between the first-order
transition phase (red) and the continuous phase (green). We see that a larger average degree 〈k〉 results in a continuous phase, whereas a smaller
average degree results in an abrupt change. The network size N = 20 000.
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V. CONCLUSION

In this work, we illustrate the impact of resource amount on
both artificial and empirical networks, and the results validate
the applicability of our theoretical findings. Although the
networks used may not be representative of real spreading net-
works for different diseases, we think that they are represen-
tative of both homogeneous and heterogeneous networks. The
complicated phase transition behaviors that differ in homoge-
neous and heterogeneous networks generate rich behaviors in
the spreading dynamics. Moreover, our result is not a simple
extension of Pastor-Satorras and Vespignani’s classic result
[10]. First, for all empirical networks, including finite-size
scale-free networks (used in the simulation), their propagation
thresholds are not 0. Second, for scale-free networks with
power-law exponents larger than 3, these networks still re-
quire a significant amount of resource to contain epidemics
when the initial infectious fraction tends to 0. Third, there is
a new threshold on the scale-free network, βb, which is not in
the classic result [10].

There are two important implications for epidemic disease
containment. First and foremost, the amount of public
resource spent on controlling the spread needs to be higher
than a critical value; any amount devoted below this level
will be wasted, without a substantial impact on spreading
containment. Additionally, any additional amount of resource
far above the critical level will bring only a marginal benefit
to the containment, as our results indicate that the reduction
in the final infected population is indeed small. Second,
because many contact networks such as sexual contact
networks and social networks are heterogeneous in their
degrees, to effectively contain an epidemic disease, even if
the initial number of spreaders is very small, we need to
set aside a significant amount of resource at the beginning.
Any hesitation in devoting enough resource will eventually
result in the loss of many lives as well as tremendous public
resources. The most fatal diseases measured by the case
fatality rate, like Ebola [30] and HIV [31], are among the
least infectious in terms of the basic reproduction number
(β〈k〉); otherwise they will kill all of their hosts and be unable
to reproduce. Therefore, these most fatal diseases tend to
show abrupt transitions according to our results, meaning that
even a little inadequacy in the devoted public resource can
lead to catastrophic outbreaks causing considerable casualties.
The effect of the resource on improving the recovery rate can
be achieved in a more general sense. For example, during
the onset of a disease outbreak, public awareness and disease
prevention measures can significantly reduce human contact,
which is equivalent to reducing the disease transmission or
increasing the curative rate. These social activities, which
may also bring the system to an abrupt phase transition, may
depend on financial support by the government. Therefore
abrupt changes may be more common and relevant in practice.
In such cases it is of extreme importance to investigate
the resource adequacy in fighting the epidemic disease,
preventing it from evolving into a large-scale pandemic.
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APPENDIX

1. Data sets

In this section, we list detailed information on the four
online social networks and the sexual contact network. In
addition, information on the empirical data is listed at the
end.

(1) Sexual contact network: The full data set contain-
ing the sexual network is downloaded from [20]. It records
50 185 contacts between 6642 escorts and 10 106 sex buyers.

(2) New Orleans Facebook network: The New Orleans
Facebook network [32] is downloaded from the Social Com-
puting Group [33]. The network contains 63 392 nodes and
1 633 772 edges.

(3) Twitter network: The social network Twitter [34] is
downloaded from the Stanford Large Network Dataset Col-
lection [35]. There are 8106 notes and 2 684 606 edges in the
network.

(4) Weibo network: The Weibo data set records the net-
work data of Sina Weibo [36] users in Macau, which was
gathered using web crawlers in October 2012 [37]. The net-
work contains 24 023 nodes and 186 753 edges.

(5) Cholera data sets: The data sets of reported cholera
cases and deaths (Global Health Observatory data) are down-
loaded from the website of the World Health Organization
[38].

(6) Gross domestic product (PPP) per capita: The gross
domestic product (at purchasing power parity) per capita is
the PPP value of all final goods and services produced within
a country in a given year, divided by the average (or midyear)
population for the same year [39]. This data set is downloaded
from the World Bank website [40].

(7) Population data: The worldwide population is recorded
at the World Bank website [41].

2. Theoretical analysis of a general recovery rate

The analysis in the text considers the case μ = e−ρ(t )/R,
but it can be directly generalized to the case where the
recovery rate μ takes another explicit form. Now assume that
the recover rate μ ∈ [0, 1] is a general monotonic increasing
function of the variable R

ρ
. Specifically, we assume μ(ρ) =

g( R
ρ

), where g(x) is a smooth increasing function defined
on [0,+∞) and satisfies g(0) = 0, g(+∞) = 1. We prove
that under these general conditions, the phase behavior is
still similar to that in the previous cases. The cases of the
random regular network and power-law network are discussed
separately.

a. Random regular network

The infected density is governed by the equation dρ

dt =
f (ρ) = β〈k〉ρ(1 − ρ) − g( R

ρ
)ρ, and f ′(ρ) = β〈k〉(1 − 2ρ) +

R
ρ

g′( R
ρ

) − g( R
ρ

). The equilibrium state, given by f (ρ) = 0, is

ρ0 = 0 or the solution of the equation β〈k〉(1 − ρ) = g( R
ρ

),
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FIG. 10. Relation between curves K (x) and g(x) in the analysis
of the random regular network. (a–c) The case of β〈k〉 < 1. (a) For
small R, there are two intersection points between K (x) and g(x).
(b) Critical value of R where K (x) and g(x) are tangent to each other.
(c) For large R, they have no intersection point. (d) The case of
β〈k〉 > 1. K (x) and g(x) have one intersection point for all values
of R.

ρ ∈ (0, 1]. Now f ′(ρ0) = R
ρ0

g′( R
ρ0

) − β〈k〉ρ0, and f ′(ρ0) < 0
or f ′(ρ0) > 0 implies that it is stable or unstable, respectively.

Define x = R
ρ

∈ [R,+∞); then the equation determin-
ing the equilibrium state is transformed to g(x) = β〈k〉(1 −
R
x ), x � R. Also note that x0 = R

ρ0
; then f ′(ρ0) < 0 ⇐⇒

g′(x0) <
Rβ〈k〉

x2
0

. Now the number of equilibrium states and
their stability can be analyzed by a graphic method, i.e., by
comparing the figures of g(x) and K (x)

.= β〈k〉(1 − R
x ) for

x � R.
First, consider the case β〈k〉 < 1. Now f ′(0) = β〈k〉 −

1 < 0, implying that the zero equilibrium state ρ0 is stable.
Note that K (+∞) = β〈k〉 < 1 = g(+∞) and K (R) = 0 �
g(R). Since g(x) is a smooth general increasing function,
from the shape of the function K (x), we know the following
fact. When R is small, there are two intersection points, at
x = x1 and x2, with x1 < x2, referring to Fig. 10(a). Since
g′(x1) < K ′(x1) and g′(x2) > K ′(x2), the equilibrium ρ1 = R

x1

is stable while ρ2 = R
x2

is unstable. When R is large, g(x) and
K (x) have no intersection points [Fig. 10(c)], so ρ0 = 0 is
the unique equilibrium state in the system. At a critical value
R = Rc, g(x) and K (x) are tangent to each other, referring to
Fig. 10(b). This critical value is the first-order transition point.

Next, consider the case β〈k〉 > 1. Now K (+∞) = β〈k〉 >

1 = g(+∞) and K (R) = 0 � g(R). For any value of R, there
is only one intersection point between g(x) and K (x), at
x = x1. And g′(x1) < K ′(x1) implies that the equilibrium state
ρ1 = R

x1
is stable and f ′(0) = β〈k〉 − 1 > 0 implies that the

FIG. 11. Relation between curves K (x) and h(x) in the analysis
of the power-law network. (a) The case when β〈k〉 is large. K (x)
and h(x) have one intersection point for all values of R. (b–d) The
case when β〈k〉 is small. (b) For large R, K (x) and h(x) have only
one intersection point. (d) For small R, they also have only one
intersection point. (c) For medium R, they have three intersection
points.

zero equilibrium state ρ0 = 0 is unstable. In this case the
phase is continuous.

In summary, we have proven that for random regular
networks, when β〈k〉 < 1, there is a first-order transition
[Fig. 12(b)], but when β〈k〉 > 1, the phase is continuous
[Fig. 12(a)].

b. Power-law network

The graphic analysis method for a power-law network is
similar to the case of a random regular network. Let us simply
discuss the outline here. With the heterogeneous mean-field
approximation approach, we have shown that the final nonzero
infected equilibrium state ρ0 is given by the equation 	(ρ) =
ρ, and 	′(ρ0) < 1 or 	′(ρ0) > 1 implies that it is stable or
unstable. Here, 	(ρ) = 2(eϕ−ϕ−1)

(eϕ−1)2 and ϕ = 2μ

β〈k〉 . Since g is a
general increasing function, we denote its inverse function
h(x), which is a monotonic increasing function defined on
x ∈ [0, 1), with h(0) = 0 and h(1−) = +∞. Now denote x =
g( R

ρ
) ∈ [g(R),+∞); then ρ = R

h(x) . Moreover, denote H (x) =
(ex−1)2

2(ex−x−1) , x � 0. It can be easily shown that H (x) is a mono-
tonic increasing function with H (0) = 1, H (+∞) = +∞.

With these notations, the equation 	(ρ) = ρ is then trans-
formed to h(x) = RH ( 2x

β〈k〉 ), x � g(R). Further, denote K (x) =
RH ( 2x

β〈k〉 ); then K (x) is obtained from stretching transforma-

tion of H (x). Note that h(g(R)) = R < RH ( 2g(R)
β〈k〉 ) = K (g(R)).

It can be shown that the parameters R and β〈k〉 change the
shape of the curve of K (x) and the intersection points of h(x)
and K (x) and thus affect the phase behavior.
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FIG. 12. Diagram of diverse phase behavior. (a) Continuous phase with no phase transition. (b) First-order phase transition. (c) Hybrid
phase transition.

The function K (x) is transformed from H (x) by an exten-
sion of the x axis and y axis. The larger β〈k〉 is, the greater the
extension of the x axis. Similarly, the larger R is, the greater
the extension of the y axis.

For a large β〈k〉, K (x) is highly extended on the x axis.
Thus, for any value of R, h(x) and K (x) have only one
intersection point, x = x1, and k′(x1) < h′(x1) implies that
the corresponding equilibrium point is stable, referring to
Fig. 11(a). In this case, the phase is continuous. For a small
value of β〈k〉, K (x) can have more than one intersection point
with h(x), depending on the value of R. Most importantly,
if R takes a medium value, h(x) and K (x) can have three
intersection points, x1 < x2 < x3, referring to Fig. 11(c). The

equilibrium points corresponding to x1 and x3 are stable, while
the one corresponding to x2 is unstable. However, when R
is larger than a critical value [Fig. 11(b)] or smaller than
a critical value [Fig. 11(d)], h(x) and K (x) have only one
intersection point, corresponding to a stable equilibrium. The
critical value of R, where h(x) has a tangent point with K (x),
is the hybrid (or first-order) phase transition point.

In summary, we have proved that for heterogeneous power-
law networks, when β〈k〉 is small, there is a hybrid (or
first-order) transition [Fig. 12(c)], but when β〈k〉 is large,
the phase is continuous [Fig. 12(a)}. The critical values de-
pend on the properties of the network and the recovery rate
function.
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