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While abrupt regime shifts between different metastable states
have occurred in natural systems from many areas including
ecology, biology, and climate, evidence for this phenomenon in
transportation systems has been rarely observed so far. This lim-
itation might be rooted in the fact that we lack methods to
identify and analyze possible multiple states that could emerge
at scales of the entire traffic network. Here, using percolation
approaches, we observe such a metastable regime in traffic sys-
tems. In particular, we find multiple metastable network states,
corresponding to varying levels of traffic performance, which
recur over different days. Based on high-resolution global posi-
tioning system (GPS) datasets of urban traffic in the megacities
of Beijing and Shanghai (each with over 50,000 road segments),
we find evidence supporting the existence of tipping points sepa-
rating three regimes: a global functional regime and a metastable
hysteresis-like regime, followed by a global collapsed regime. We
can determine the intrinsic critical points where the metastable
hysteresis-like regime begins and ends and show that these crit-
ical points are very similar across different days. Our findings
provide a better understanding of traffic resilience patterns and
could be useful for designing early warning signals for traffic
resilience management and, potentially, other complex systems.
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U nderstanding the intricate patterns of city traffic is a major
challenge, in terms of both theory and applications. In
particular, severe congestion in urban transportation can cause
substantial damage to economic and other systems, thus high-
lighting the importance of studying and understanding the com-
plex dynamics of traffic. One significant question that has so
far been unknown is whether urban traffic exhibits multiple
metastable macroscopic states, which would suggest different
strategies for managing the system (1). In general, multiple
states have been found in many natural systems including ecol-
ogy and climate systems (2). These states signify the system
resilience since these natural systems can respond differently
when facing the same level of perturbations. This metastability
is due to the fact that these systems undergo a critical tran-
sition between multiple states, where a small disturbance may
lead to an abrupt regime shift (3, 4). The fundamental diffi-
culty in identifying such multiple states is related to the lack
of methods capable of characterizing urban traffic at a global
level.

Most existing resilience studies focus on the critical transition
between multiple states in natural systems (5), where either a
single temporal parameter (6) or experimental conditions (7)
demonstrate the approach to a critical point, representing an
upcoming system phase transition. Due to the nonstationary time
series and long-range spatial correlations during system evo-
lution, it becomes difficult to apply simply existing resilience
analysis (8) to the transportation system, as well as other critical
infrastructures. For example, although autocorrelation predicts
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the closeness to a fold bifurcation (5), noisy measurements and
nonstationarity in the time series in many realistic cases may
mask the correlations and lead to false predictions. To overcome
this issue, spatial patterns with more information and higher res-
olution could be useful for predictions at short time scales and
even provide possible mitigation methods. We study here the
spatial patterns of functional traffic networks (consisting of con-
nected roads with relatively high speed, called “functional”) in
cities and ask whether the functional network exhibits multiple
metastable states under a specific congestion rate in the road
network. Using a network metric (the size of the largest func-
tional cluster) based on percolation theory, we find metastable
states with a hysteresis-like phenomenon in urban traffic. This
traffic metastability phenomenon can be observed in different
traffic datasets. Furthermore, we also identify the tipping points
for the onset of the multiple states, where the system can change
between them. These findings not only reflect the system’s oper-
ational mechanism, but also could provide city managers with
early warning signals of imminent major collapse.

The urban transportation network can be represented as a net-
work structure with intersections as nodes and road segments
as links. In this study, we have collected real-time traffic data
(instantaneous speed in each road) during a specific period (e.g.,
1 mo) for several cities in China. These velocities are recorded
by floating cars at a resolution of 1 min. Due to the flow dynam-
ics, the relationship between system reliability and structural
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Examples of metastable states in urban traffic for a typical day based on real data of Beijing. (Center) Relative size of the largest functional cluster,

represented by G, evolves with time between essentially two states during morning hours in a typical day (October 27) for a given congestion rate f = 0.25.
(Right and Left) A clear bistate phenomenon can be seen: The five largest functional clusters in the urban traffic at certain times of October 27 (which are
colored in blue, orange, purple, green, and magenta from large to small) represent two typical traffic states (for samples in other days, see S/ Appendix,

Fig. $2-2).

connectivity is not always intuitive (9, 10). This traffic system
which combines dynamics (traffic flow) and structure (road net-
work) can then be analyzed by percolation theory for its global
performance under different failure scenarios (congestion rates)
(11, 12). From the viewpoint of reliability management, con-
gestion can be regarded as the failure of the traffic system. A
road with velocity lower than a specific service level (such as a
given relative velocity threshold) is considered failed since it can
hardly handle traffic flows within a certain time. On the con-
trary, roads with higher speed can be regarded as functional.
Under an increasing traffic load, a fraction of roads in a city
will be regarded as failed (below the relative velocity thresh-
old), while the remaining free-flow roads can form connected
functional clusters of different sizes. These clusters of connected
functional roads reflect the accessibility of the road network.
The network accessibility is defined by the functional fraction
of the traffic network, i.e., the relative size of the largest func-
tional cluster, above a certain service requirement (12-14). For
a given threshold, the greater the largest functional cluster is,
the higher is the accessibility of the city traffic. While prior
studies explain how local blockages of traffic flow can result in
global congestion, here we study the fundamental question of
whether, as a feature of system resilience, the global traffic flow
under the same fraction of perturbations can display multiple
network states.

Results

Our datasets have been collected from real-time traffic in the
(directed) road network of different cities. Beijing includes over
27,000 nodes and 52,000 links (within the 5th Ring Road). The
velocity dataset covers real-time velocity records of roads in Bei-
jing for 17 working days in October 2015 and 9 working days in
October 2018. Road velocity is obtained from global positioning
system (GPS) data recorded in floating cars with 1-min resolu-
tion. The dataset of Shanghai, which is composed of over 26,000
nodes and 51,000 links, has the same temporal resolution as Bei-
jing and covers 5 working days in October 2015 and 17 working
days in October 2017. Jinan, a comparatively small city in China,
has around 12,000 nodes and 22,000 links. The velocity data are
also recorded with the same resolution, covering 5 working days
in October 2018.

By applying percolation analysis for each city, we first deter-
mine the service level of each road in the city. Here we use the
relative velocity derived from real-time data to indicate the road
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operation level. For a given road, we sort in increasing order
the velocity measured at a given day and choose the 95th per-
centile as the standard maximal velocity. Then we normalize the
velocities of each road at each instant by dividing them by their
standard maximal velocity on that day. In this way we obtain the
relative velocity of each road at every minute, 74 (t) = vy (t)/vj}".
Here, v;;(¢) is the real-time velocity of the road connecting node
1 to node j at time ¢, v;;" is the standard maximal velocity of this
road for that day, and r;;(¢) is the relative velocity. For a given
relative velocity threshold, ¢, the road with r;;(¢) < ¢ is consid-
ered failed (10). The congestion rate, f, is therefore defined as
the fraction of failed roads with respect to the total number of
roads.

Here we mainly focus on the transportation system of Bei-
jing in China, as an ideal system for our study. In Beijing with
the central area covering over 700 km? and a population of over
20 million inhabitants, passengers usually spend almost twice as
much time for commutes during rush hours, compared to non-
rush hours™, which causes huge economic losses and other social
risks. We study data from the month of October which is one
of the busiest months in Beijing. As shown in Fig. 1, we observe
that the urban traffic can have multiple network states describ-
ing the global performance at the scale of the entire city. For
instance, for a given fraction (i.e., f = 0.25) of congested roads,
at 7:41 AM of 27 October 2015, the traffic network breaks into
several fragmented parts; however, a few minutes later, with the
same fraction of congested roads, at 7:48 AM, these small traf-
fic clusters merge into a large functional cluster spanning almost
the whole city of Beijing. In fact, during most morning hours in
a typical day, the dynamical state of the traffic system in Fig. 1
shifts back and forth frequently between these two states (more
demonstrations are shown in ST Appendix, Fig. S2-2). This regime
shift suggests that urban traffic may undergo a sharp transition
between alternative network states.

To further study the multiple states in urban traffic, we analyze
the entire dataset and measure how the size of the largest func-
tional cluster (G) changes with the congestion rate (f) (Methods).
As seen in Fig. 24, the largest functional cluster decreases as the
congestion rate f increases. More importantly, at a given con-
gestion rate f, urban traffic can form either a large functional
network (we call it an H state, representing a high-performance

*http://huiyan.baidu.com/cms/report/2018Q2jiaotong/index.html.
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Fig. 2. Multiple states in real-time traffic percolation. (A) In real time, the percolation process shows a metastability phenomenon: There exist essentially
two states of city traffic for a given f value (between 0.1 and 0.4) for the morning hours (during 6:00 to 10:00 AM) in all of the 17 working days in October
2015. For comparison, we observe (/nset) only one state in a controlled random case where links are removed randomly. (B) The G-f plot for different periods
(nonrush hours during 6:00 to 6:30 AM and rush hours during 7:30 to 8:30 AM) in all of the working days. (C) The distribution of G for different values of f.

The bistate phenomenon is clearly seen between f = 0.2 and f = 0.3.

state of the traffic network) or a much smaller network (we call
it an L state, representing a low-performance state of the traf-
fic network). This metastability is surprising since the largest
cluster of the structural road network decreases monotonically
as the removal fraction increases as seen for a controlled ran-
dom percolation process, in Fig. 24, Inset, with a critical point
around f, = 0.2. This behavior can be regarded as the struc-
tural reliability of the road network, neglecting the dynamics
of traffic flow interactions. Note that in the city of Shang-
hai (SI Appendix, Figs. S1-1 and S1-2), there seem to be even
three regimes rather than the two regimes found in Beijing. We
argue that the landscape of the attraction basin in urban traf-
fic depends on both the city network structure and the flow
dynamics therein. We have studied (SI Appendix, Figs. S1-3 and
S1-4) a different time period in Beijing (i.e., October 2018),
which also demonstrates similar multiple states. However, for
Jinan, which is smaller compared to Beijing and Shanghai, our
results suggest that only a single state is observed (SI Appendix,
Figs. S1-3 and S1-4).

The phenomenon of multiple states often occurs at a specific
time window. For example, in nonrush hours during 6:00 to 6:30
AM, the percolation is monotonically decreasing with increas-
ing failure fraction (Fig. 2B) (see also SI Appendix, Fig. S1-5
for more details). Note that this percolation process is signif-
icantly more robust (f. ~0.5) than the structurally controlled
case in the inset of Fig. 24 (f. ~0.2). On the other hand, for
rush hours during 7:30 to 8:30 AM, multiple states emerge for
percolation under a given congestion rate, as seen in Fig. 2B.
This multistate behavior is validated statistically (SI Appendix,
Figs. S3-1-S3-4). Interestingly, these two behaviors overlap in
the upper-state regime in the range of f € [0, 0.2], yet during
7:30 to 8:30 AM, there also exists a lower-state regime for G
with f € [0.1, 0.3]. Thus, while in the period during 6:00 to 6:30
AM one state exists, and during 7:30 to 8:30 AM two states exist.
We also observe similar (but weaker) multistate behavior during
evening rush hours (S Appendix, Figs. S1-6 and S1-7). However,
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two such states almost do not appear in days off (SI Appendix,
Fig. S1-8).

To infer the shape of the attraction basin of each regime,
we calculate the size distribution of the largest functional clus-
ter (G), for different f values. As seen in Fig. 2C, for a low
congestion rate f (e.g., f =0.1), urban traffic is unimodal with
a peak at high performance (G & 0.9); when f increases, more
roads become congested and the probability of being in the
high-performance regime decreases, leading to a transition to a
low-performance regime. Two alternative regimes can be seen
to coexist for a wide range of values of the congestion rate, f.
In this way, the two possible states for the same f in Fig. 24
can be separated by a suitable boundary line (details can be
found in Methods). For a congestion rate f greater than about
0.4, there exists only one state, namely the low-functioning
state.

To visualize the distribution of states over time, we combined
results from different days into a single plot, as seen in Fig. 34.
Two critical points in time can be observed. At the first point
around 7:00 AM, the L state begins to appear, and the system
can exist in either the L state or the H state. The competition
between the two states becomes stronger as time progresses.
This competition ends at the second critical point around 9:00
AM, when the system shows only the high-performance state.
These two instants could help predict the likelihood of traffic
operational state and suggest possible real-time resilience man-
agement schemes for different congestion stages. We also find in
Fig. 3B that the occurrence of the two alternating states is slightly
different on different working days, which represents overall traf-
fic performance for each day. Meanwhile, on October 21, the
system stays mostly in the low-performance regime, while on
October 23, the fraction of the H state is much more significant
than that of the L state. Note the fact that October 21 is a tradi-
tional festival in China in the lunar calendar, although it is still
officially a workday. The system state can show a “temporal per-
sistence,” as seen in Fig. 3C. When considering autocorrelation
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Fig. 3.

Evolution of alternating states in a traffic network. (A) Probability of different system states as a function of time under a given congestion rate f =

0.25 in 17 workdays. (B) Probability of the system state during 7:00 to 9:00 AM in every workday under a given congestion rate f = 0.25. (C) Autocorrelation
(i.e., G(t + 1) versus G(t)) for morning hours during 7:00 to 9:00 AM in a typical day (October 30), given f = 0.25.

of the system performance (G) for a given day, it is clearly seen
that the high-high transition and low—low transition appear more
frequently for a given working day compared to high-low and
low-high switches (more daily results can be seen in ST Appendir,
Fig. S4-4).

To avoid system collapse, it is critical to locate the tip-
ping point of the system through abrupt shifting to the low-
performance regime. As shown in Fig. 24, we observe two critical
fractions, within which the multiple system states exist. These
two congestion rates indicate two tipping points which would
require the adoption of different traffic control strategies. Pre-
vious works in other fields (15-18) have proposed many methods
to locate the tipping points of multistate systems through various
temporal signals. However, it is difficult to apply these meth-
ods here due to the noise and instability of traffic dynamics.

Therefore, as seen in Fig. 4 A and B, we show how we apply
our percolation method to locate these tipping points. Accord-
ing to the theory of phase transitions in percolation, much can
be learned from studying the scaling behavior when approaching
the critical point. For example, when the system is close to the
percolation critical point, f., the order parameter of the system,
i.e., the giant component size G, varies as (19)

|G — Ge|~|f — f|”. [1]

Here f. is the critical point where a system phase transition
can occur, and the critical exponent ( tells us how fast the
order parameter vanishes at the critical point. We locate simul-
taneously both the critical point f. and the critical exponent 3
by calculating, for each day, the scaling behavior of G in the
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Fig. 4. Criticality and persistence of urban traffic system. (A) The scaling relationship between |G — G| and |f — f.|, where f. (around 0.16 in this case)
is determined by the (best) fit in a log-log plot with the largest statistic R? (details can be seen in SI Appendix, Fig. S5). (B) Distribution of f, for each
workday obtained by the critical scaling method. It is found that the values of f, are concentrated in two narrow ranges. (C) Schematic demonstration of
the persistence of the traffic network state. With adiabatic changes of congestion rate f, the system is more likely to persist in the same state as before.
(D) System state persistence during 7:00 to 9:00 AM in every workday. H¢ or Ly is the system state when the congestion rate is f, whereas Hyy or Ls_ is the
system state when the congestion rate increases or decreases slightly (by Af = 0.01). The mean values of f. obtained in B, with SD, are also shown here.
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vicinity of the critical point (G, represents the largest functional
cluster size at f). Note that here we analyze |G — G.| as a func-
tion of |f — f.| instead of simply G, considering the transition in
this dynamical percolation is likely a hybrid one (20), as shown
in Fig. 44. More results for specific days can be found in SI
Appendix, Fig. S5. The two critical points are similar for different
days, as seen in Fig. 4B. We also find that the critical exponent 3
is very similar and thus assumed to be universal across all days,
suggesting that it relates to fundamental symmetries in the traffic
percolation of Beijing (SI Appendix, Fig. S5).

The observation of metastability seen in Fig. 24 suggests a
possible hysteresis-like behavior. One fundamental feature of
hysteresis is persistence, where the system prefers to remain in
the same state in the hysteresis regime. Following this idea, we
study and test the persistence of each state. Focusing on the time
during 7:00 to 9:00 AM in all of the working days, we observe
significant persistence in the traffic percolation. That is, with
adiabatic changes (i.e., small increases or decreases) of the con-
gestion rate f, the system is more likely to persist in its previous
state, as seen in Fig. 4 C and D. Statistically, we define the condi-
tional transition probability Pr(Hy | Hy, f), where Hy means the
system being in the H state for the current congestion rate f,
while Hy, refers to the system remaining in the H state if the
congestion rate increases by Af (here we set Af = 0.01). A sim-
ilar definition can be made for the system’s likelihood of staying
in the L state as the current congestion rate f is decreased and is
indicated by Pr(Ls_|Ly, f). As seen in Fig. 4D, we find that the
traffic network is more likely to “memorize” its previous state
within the metastable region. The existence of this persistence
in traffic represents a signature of metastability and hysteresis at
the entire network scale (21).

Discussion

Urban traffic, as a nonequilibrium complex system, undergoes
in megacities critical transitions almost every day. Faced with
the challenge of increasing uncertainty, and various perturba-
tions from extreme climate to collision accidents, it is essential
to understand and explore the nature of the system’s adaptation
and recovery. Here, we identified multiple states in functional
traffic networks under the same perturbation at the scale of the
entire city. These phenomena may be due to the existence of
long-range correlations. Based on real data, the emergence of
long-range correlations in traffic congestion has been found (22)
during the rush hours. Indeed, it has also been suggested (23)
that long-range connections can determine the overall flow con-
ductance of the network. This long-range correlation, combined
with the dynamical fluctuations of commute traffic in the megac-
ity, may generate the multiple macroscopic states, which can be
identified by our percolation method. Moreover, we propose a
statistical approach to accurately locate the critical point sepa-
rating the region where a single state exists and the region of
multiple states. We find that the multiple states of the system and
the transitions between them are highly parallel to the hystere-
sis phenomenon from statistical physics. Precisely, we observe
that the system experiences strong persistence in the metastable
regime. For adiabatic changes (small changes) in f, the system’s
state is highly dependent on its previous state with the system
being more likely to remain in the same state. Nonetheless, we
refer to this phenomenon as “hysteresis-like” since the mech-
anisms behind this pattern require further study in the future.
Even still, the parallels are remarkable and strongly justify the
applications of statistical physics to complex systems such as
urban traffic.

There are several future implications based on our current
results. The first implication is the critical point identified in
our study. With this critical point, we can design early warn-
ing signals based on real data of traffic velocity or flux. When
this signal is measured showing the traffic system is approach-
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ing the critical transition, one could implement more specified
traffic signal controls (24) or congestion toll (25) onto bottle-
neck areas to adjust the traffic flow dynamically. Furthermore,
if we enter the multistate regime of system dynamics, certain
mitigation methods could be developed in the future to help the
system to maintain the high-performance state or to recover soon
from the low-performance state. The above implications could
be realized with intelligent transportation technologies through
coordinating road states, car behaviors, and human decisions,
with smart agents deployed across different levels. In contrast to
most proposed methods based on car density control, our find-
ings suggest an insightful direction for traffic control. Namely, to
avoid the abrupt regime shift from a high-performance regime
to a low-performance one, we should focus on decreasing the
number of congested roads before the network reaches its
tipping point.

These multiple states may also explain the origin of high travel
heterogeneity from the individual’s perspective (26). In the high-
performance state, a driver will enter the largest cluster of good
traffic with a high probability and feel a smooth driving expe-
rience. However, in the low-performance state, the driver will
feel a very fragmented and fluctuating traffic experience. Nor-
mally, we expect a similar traffic experience along the same
commute route every morning. However, if we compare the driv-
ing experience on the days of October 21 and October 23 with
different state configurations, one will feel contradicting traffic
experiences at the same time in these different days.

Given Holling’s (4) definition of resilience in ecology, resi-
lience studies in engineering fields have recently begun to focus
on the system’s ability to absorb, adapt, and recover (27, 28).
While traditional system reliability engineering has focused on
the design of a system to avoid operational collapse, the more
recent study of system resilience has shifted the viewpoint for
system reliability and safety from “safe—fail” to “fail-safe” (29),
suggesting a systematic management paradigm to recover from
unexpected disturbances. It is found that many natural sys-
tems can become stabilized at different state levels under the
influence of random events, which suggests the existence of dif-
ferent domains of attraction in these systems (4). In this sense,
resilience suggests multiple metastable states in ecology, cli-
mate, and biology systems. Meanwhile, for engineering systems
including critical infrastructures, it is usually assumed that the
system has only one single equilibrium state and will return to
this original state after perturbations. Identification of multiple
network states suggests the necessity of paradigm shift for the
corresponding complex system management.

Our methods consider both network structure and dynam-
ics, which can be easily generalized to many other complex
networks. By learning the spatiotemporal features of system
transitions, our resilience theory can help develop sound pre-
dictive methods. These can then be applied to a wide range
of fields including avoiding epileptic seizures in the brain (5),
predicting extreme weather in climate systems (6), foreseeing
epidemic outbreaks (30), and avoiding collapse in financial sys-
tems (31). Based on the concept of critical slowing down (32),
many temporal indicators have also been proposed including
autocorrelation and variance. However, these temporal indica-
tors usually require high-resolution data of long time series and
become less reliable when the level of noise is high (8). Chang-
ing external perturbations on the supply and periodic demand
in critical infrastructures makes it hard to predict their close-
ness to a tipping point using traditional temporal indicators. In
some practical applications, spatial indicators are instead consid-
ered to provide more information and possible early warnings at
short time scales. For complex systems, it remains an urgent chal-
lenge to identify suitable indicators for the system collapse. Our
percolation methods may provide a possible direction toward
achieving that goal.
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Theoretical understanding for multiple metastable states,
especially for network scientists, is very interesting yet challeng-
ing. How the network structure could generate the dynamics
of multiple metastable states is a valuable question. Dynamical
models of synchronization (33) or infectious process (21) are
found to exhibit multiple states in networks. For realistic traf-
fic dynamics with more complexity, the underlying network is
embedded into spatial space, where the geometry of network
structure may play a critical role. Therefore, further studies are
needed for unveiling the relationship between system structure
and metastability.

Methods

Traffic Percolation. We study the percolation of city traffic as follows. At a
given time, we set a threshold g from 0 to 1 with a given interval (e.g.,
0.1 or 0.05). We compare the relative velocity of a road for a given q:
If the relative velocity is larger than g, then we consider the road func-
tional at this given time; otherwise it is considered failed and removed
from the original road network. By calculating the fraction of failed roads
with respect to the total number of roads in the entire road network
for a given g, we can obtain correspondingly the congestion rate, repre-
sented by f. We use the size of the largest functional cluster (denoted
by G) to represent the state of the overall traffic at the scale of the
whole network. Large values of G represent a larger connected functional
network.

Resilience Function. For a given removal fraction f of congested roads,
we analyze the distribution of the largest functional cluster size, G, for
all of the real-time cases covering 17 working days. Although the statis-
tical validation can identify more than two states for a given f, we find
that these states can be clustered into two main regimes. For instance, in
Fig. 2C when f = 0.24, two macroscopic states exist with two maxima cor-
responding to approximately G~ 0.3 and G = 0.6. Therefore, we can find
the two maxima values in the distribution of G for a given f and make
a plot of the corresponding maximal G versus f. Using a polynomial fit,
we can obtain the optimal resilience function for each regime. We can
also determine the separation boundary line between the two regimes
by fitting the minima of the state distributions. Our percolation meth-
ods should be combined with statistical methods in the future to identify
the attraction basin accurately. Given the scattered values within f rang-
ing between 0.1 and 0.4, if a state is above the separation boundary line
(dashed line in Fig. 2A), we regard it as an H state; otherwise we define it as
an L state.
Overall, we assume the boundary line has the form of

Gs(f)=By - f2 + By - f + By, f € [0.1,0.4].

By, By, and By are the parameters derived from fitting. For the sys-
tem performance represented by G (f) at a given congestion rate f,
if f < 0.1, then the system is classified in the H-state regime; if f
> 0.4, then it is in the L-state regime. Within the range 0.1 < f <
0.4, we can compare the value of G (f) and G5 (f). If G(f) > G(f),
then the system is in the H-state regime; otherwise it is in the L-state
regime. Namely, within the above metastable range, we use the following
criteria:
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H,G(f) > Gs(f)
L,G(f) < Gs(f).

At each instant for a given f, the system state can be either an H state or
an L state. Therefore, we can calculate the frequency of the H state or the L
state for each day, indicated as Pr(H) or Pr(L) in Fig. 3B.

S(G(), £,0.1 < £ < 0.4) = {

State Persistence. When dealing with system state persistence, one should
perform adiabatic changes (small changes) of the control parameter, to test
whether the system’s state is highly dependent on its previous state (i.e., the
system is more likely to remain in the same state). By this means, a possible
hysteresis region can form (as shown in Fig. 4C). Therefore, we use the fol-
lowing formula to calculate the conditional probability of how the system
state will evolve (i.e., persist in or change its current state) under a given
condition, including the current congestion rate (f) and current system state
(H or L). This conditional probability can be indicated by Pr(H |Hy, f) and
PI’(Lf_ ‘Lf, f)

Pr(Hy | He.f)
TEHD Pr(H¢, f) >0

Pr(Hyy |He, /%
0, Pr(Hs, ) =0,
Pr(Ls_ L)
T PriL, >0
PrLs_|Ls, f) %= d TPATA r(Ls, ) >

0, Pr(Lf, f) =0.

Here Hy or Ly is the system’s state (H or L state, respectively) for the current
congestion rate f, while Hy or Ly_ is the system state when the congestion
rate f changes slightly (increasingly for “+" while decreasingly for “—,” by
Af =0.01) based on the current condition. Pr(H¢, f) or Pr(Ls, f) is the prob-
ability that system state is an H or L state for a given congestion rate f.
Pr(Hy.., Hy, f) stands for the probability that system persists in the H-state
regime with increasing f at that same instant. Similarly, Pr(L;_, L¢, f) is the
probability that the system persists in the L-state regime with decreasing f
at that same instant. Note that if Pr(Hy, f) or Pr(Ls, f) is equal to 0, we set
Pr(Hs |Hy, f) or Pr(Ls_|Ly, f) as 0.
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