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Data-driven stochastic simulation leading to the allometric scaling laws in complex systems
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We propose a data-driven stochastic method that allows the simulation of a complex system’s long-term
evolution. Given a large amount of historical data on trajectories in a multi-dimensional phase space, our method
simulates the time evolution of a system based on a random selection of partial trajectories in the data without
detailed knowledge of the system dynamics. We apply this method to a large data set of time evolution of
approximately one million business firms for a quarter century. Accordingly, from simulations starting from
arbitrary initial conditions, we obtain a stationary distribution in three-dimensional log-size phase space, which
satisfies the allometric scaling laws of three variables. Furthermore, universal distributions of fluctuation around
the scaling relations are consistent with the empirical data.

DOI: 10.1103/PhysRevE.106.064304

I. INTRODUCTION

Studying the time evolution of complex systems with-
out well-established first principles is a difficult task. For
such systems, researchers usually adopt models that signif-
icantly simplify the phenomenon using strong assumptions
on the system by inferring the first principles. Examples of
well-known dynamical systems employed for this type of
modeling include the Lotka-Volterra equation for predator-
prey interaction in ecological communities and the SIR model
for epidemics in biological and human populations [1,2].
Another strong assumption, which is often implicitly made
when phase-space reconstruction [3,4] is applied to empirical
data, is that the system dynamics are essentially determinis-
tic. Stochastic and probabilistic models have also been used
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to analyze a variety of complex systems: financial markets
are analyzed using the Ising model [5] and the spread of
information and pathogens is modelled as random walks
on networks [6]. Although these simplistic assumptions and
models facilitate rigorous mathematical analysis and intuitive
understanding of the model’s inner workings, the applica-
bilities of the models tend to be unclear. Because radically
different mechanisms can lead to similar probability distribu-
tions [7] and spatial patterns [8], the empirical verification of
the proposed mechanism at microscopic scales is an essential
part of assessing the veracity of a model. However, some
models of this type can be solely tested by whether they agree
with empirical data of macroscopic patterns, owing to the lack
of data at microscopic levels, notably in ecological [9] and
social [10] phenomena. Furthermore, a moderate modification
to some well-known models sometimes leads to entirely dif-
ferent behaviors of their solutions (e.g., the varying number of
coexisting species in ecological “niche” models [11,12] and
the degree distribution of complex networks, which is sensi-
tive to how the preferential attachment is formulated [13–15]).
For complex systems without the established knowledge of
underlying mechanisms, introducing a specific mathematical
model might induce biases in modeling and predictions.

In contrast, prediction methods based on large-scale data
sets such as machine learning have flourished in the last
decades, largely owing to the fast advancements of computa-
tional power. Recent successes in the application of machine
learning techniques in various fields has also inspired the
interests by physicists, and led to numerous applications, for
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example in condensed matter physics, from the automatic
discovery of order parameter of matter to the acceleration
of classical and quantum simulations of molecules such as
proteins [16]. This type of approach has also been tried for the
time evolution of complex systems, for example in weather
forecasts [17] and projections of COVID-19 epidemic [18].
The same trend has led researchers to increasingly employ the
method of analogs [19,20], which nonparametrically predicts
the future state of a system directly from a large amount
of past data in economic projections [21–23] as well as in
weather forecasts in combination with numerical weather pre-
diction [24,25]. It can be argued that the method of analogs
is particularly well suited to the prediction of the future states
of complex systems without well-established first principles
[26], because it can predict the state of a system in the near
future without detailed knowledge on its internal structures
and interactions with other systems or the environment, which
are often intractably entangled.

Here we further explore the potential of the method of
analogs by repeatedly using this method to obtain a long-term
simulation of a system’s time evolution in a multidimensional
phase space. The method of analogs is conventionally con-
cerned with the time series data of a system—or an ensemble
of systems—that are believed to be essentially deterministic
(see Refs. [26–29] for considerations in relation to dynamical
systems). However, we deem the set of analogs as approx-
imating the true ensemble of stochastic time evolution, and
attempt to simulate the evolution of system distributions in a
phase space. Although the mathematical considerations of our
approach were presented a few decades ago [30–33], this is ar-
guably an approach that has not been tested and evaluated well
with the performance on empirical data. Although a similar
approach was considered in the context of a long-term climate
simulation [34], it is challenging to apply this methodology to
other complex systems with scale-free property and possibil-
ity of nonstationarity. The problem is even more difficult in
the case that partial data are missing, which often occurs in
empirically observed systems.

Accompanying the fast growth of computational power,
allometric scaling with a fractional power-law exponent be-
tween system-size measures has been uncovered in large-scale
data sets of complex systems such as business firms [35–40]
and metropolises [41,42], in addition to the conventional ex-
ample of animal bodies [43–46] and biodiversity in natural
ecosystems [47,48]. Although plausible explanations of the
power-law scaling have been proposed for some of the sys-
tems [49,50], origins of such scaling relations remain unclear
for others, including business firms. We argue that simulating
the time evolution of these systems are an important step
toward understanding the systems. Therefore, in this study,
we attempt to simulate the stochastic time evolution of busi-
ness firms in a three-dimensional phase space of logarithms
of system-size measures using our repetitive version of the
method of analogs. Accordingly, we rely on a large-scale data
set that describes the status of approximately one million firms
during a quarter-century period. We determine that the station-
ary distribution of our simulation is surprisingly consistent
with the empirical distribution of firms on the phase space
when adjusting the effect of the nonstationary increase in the
yearly data.

The remainder of this paper is organized as follows. In
Sec. II A, we briefly introduce the systems studied here,
namely business firms, and examine a few properties of the
stochastic time evolution relative to previously reported allo-
metric scalings. Next, we present a stochastic version of the
method of analogs in Sec. II B and consider the assumptions
that might affect the accuracy of our simulation method in
Sec. II C. Subsequently, we investigate the transient system-
size distributions of business firms in our simulations to
ensure that the empirical system-size distributions are well
approximated by the stationary distribution in our simula-
tion (Sec. II D). We address the agreements and disparities
between simulation results and empirical data relative to al-
lometric scalings in Sec. II E. Then, we discuss our results to
conclude the study in Sec. III. In Appendices A and B, we
present further details on processing our empirical data and
normalizing the number of trading partners, respectively.

II. RESULTS

A. System under study

As a real-world example of large-scale complex systems,
we adopt business firms for our case study. A business firm
is a typical complex system: it satisfies the definition set in
Ref. [51], as it is “a system built from a large number of
nonlinearly interacting constituents,” i.e., individuals, “which
exhibits collective behavior and, due to an exchange of energy
or information,” including goods, services, and money in this
case, “with the environment, can easily modify its internal
structure and patterns of activity.” Firms are known to exhibit
hierarchical structures [52,53], a range of nontrivial power-
law scaling [37,38,40,54], and supposedly adaptive behaviors
[55]. Business firms in a country, connected by an interfirm
trading network, also collectively comprise a complex sys-
tem characterized by nonlinear interactions such as nontrivial
power laws in the money flow [56] and nonlinear preferential
attachment in mergers and acquisitions [57]. Besides being
a complex network as the “backbone” of a complex system
[58], the interfirm trading network in Japan has been reported
to exhibit several properties that have often been considered
typical [51,59,60] for real-world networks, such as a heavy-
tailed degree distribution approximated by a power law [61],
a small-world property characterized by a short distance be-
tween two arbitrary nodes [62], and a modular structure with
multiple communities [63].

The data employed in this study are provided by Teikoku
Databank, Ltd., Japan (hereafter TDB) and describe the an-
nual status of business ≈106 firms incorporated in Japan
during a 25-year period. In particular, they include the list
of trading partners, along with the annual sales and number
of employees. Therefore, we can consider the system to be a
complex network with ≈106 nodes of firms and up to 4 × 106

links of trading relations. See Appendix A for further details
regarding the provided data and our data compilation in this
study. It is important to note that the data are sometimes miss-
ing, although only partially. The processing of such missing
data will be comprehensively discussed in Sec. II B.

Firms have been typically characterized by power-law dis-
tributions of system size. Whether it is measured by the
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annual sales, number of employees, total assets or count of
trading relationships with other business firms, a firm’s size
is usually distributed along several orders of magnitude and
approximately follows a power-law distribution in exhaustive
data sets [35,40,61,64–70]. Note that the number of trading
relationships in this case amounts to the sum of in- and
out-degrees of a node in the interfirm trading network. There-
fore, a power-law distribution of the number of interfirm
trading relationships implies that the network of trading and
transactions between firms is scale-free. In the empirical data
[40], the firm size distributions barely change in the timescale
of one year and are very robust against fluctuations in the
economic climate.

Less widely known is the nontrivial scaling relationships
of the form, x ∝ yγ , between different measures of a firm’s
system size, such as the annual sales, numbers of employees,
and number of business trading partners [35–40]. In a formal
notation, the distribution of size by one measure (here y)
normalized by 〈y|x〉, the average value of y conditional on
the other size measure (x), is independent of the system size
measured with x. In other words,

y/〈y|x〉 ⊥⊥ x,

where the symbol ⊥⊥ represents the independence between
two stochastic variables. Owing to the power-law scaling re-
lationship,

〈y|x〉 ∝ xγ ,

the conditional probability of y can be described as

P(y|x) = 1

xγ
P̃

(
y

xγ

)
, (1)

using a single probability function P̃. We refer to the random
variable defined by this function as a universal probability
function of fluctuation. Such functions also exhibit a power-
law tail in empirical data [37,40].

A power-law scaling implies that the observed system is
relatively densely distributed on a “scaling line” in the phase
space of log-transformed size measures. In Fig. 1(a), the scal-
ing line for the three-dimensional phase space of logarithms
of the number of trading partners (k), number of employees
(�), and annual sales (s) in million yen is depicted as an
orange line. Note that these three measures of size have been
particularly well studied as the joint distributions of firm size
measures fit into simple mathematical descriptions [40]. For
example, their density functions have virtually no jump dis-
continuity, except at very low values where the ratio between
consecutive integers is not approximated by 1.0. Power-law
scaling relationships, � ∝ k1.0, s ∝ k1.2, and s ∝ �1.2, can be
considered as two-dimensional projections of a single three-
dimensional scaling. This suggests that a firm either returns
toward the line or simply disappears after it deviates from
the scaling. In our previous study [55], it was verified that
the scaling relationships are maintained in both ways. Af-
ter a large deviation from the scaling, firms usually return
quickly onto the scaling line; however, they are also more
likely to disappear owing to reasons such as being acquired
and bankruptcy. A typical trajectory of surviving firms in the
phase space is illustrated in Fig. 1(a).

In our previous study [55], we considered the average dy-
namical tendencies toward the scaling line, using the vector
field of mean yearly displacement in the phase space. Note
that the dimensions of the phase space are log-transformed
system-size measures. After a normalization of k against the
increase in data (see Appendix B for details), a location in the
phase space at time t , x(t ), is defined as

x(t ) ≡ [ln k̃(t ), ln �(t ), ln s(t )]T ,

where k̃ denotes the normalized number of trading partners
defined by

k̃(t ) ≡ N2016

Nt
k(t ),

where Nt is the number of firms with one or more records of
their trading partners in year t . Accordingly, a yearly displace-
ment of a single firm at time t , g(t ), is defined as

g(t ) ≡ x(t + 1) − x(t )

= [ln Gk̃ (t ), ln G�(t ), ln Gs(t )]T ,

where Gx(t ) = x(t + 1)/x(t ) for a system-size measure x
and natural logarithms are adopted. The distribution of dis-
placement substantially depends on the starting point of the
displacement, x(t ). The mean displacement conditional on the
starting point, 〈g|x〉, can be estimated from a large data set
of historical time evolution. Remarkably, the scaling line is
approximately the attractor of this vector field, which implies
that the scaling relationships are dynamically stable.

In the present study, we focus on the distribution, rather
than the mean, of yearly displacements of firms, g(t ). Exam-
ples of g(t ) conditional on some values of x(t ) are presented
in Figs. 1(b)–1(d), and descriptive statistics for the distribu-
tions are tabulated in Table I. The three starting points of the
displacements are illustrated in Fig. 1(a). The distribution of
g(t ) varies substantially with the starting point x(t ). Yearly
displacements starting from around the scaling line are rather
symmetrically distributed [Fig. 1(b)]. Note that the data are
abundant around this starting point, (k̃, �, s) = (10, 10, 500),
as firms are densely located near the scaling line. However,
less data exist on the displacement starting from a state that is
distant from the scaling line. In these zones, the displacement
is usually biased towards positive or negative values in some
directions, and exhibits relatively larger variance, as presented
in Figs. 1(c) and 1(d) and Table I.

We consider the distribution of displacement as generally
not consistent with a multivariate Gaussian distribution based
on the following reasons. The non-Gaussian properties are
evident for the point (c) and can be confirmed with the neg-
ative (for �) and positive (for s) mean log-growth (Table I).
Although there is none of such apparent peculiarity for the
displacement distributions around the point (d), asymmetricity
appears in the distribution of ln G� and ln Gs, where ex-
treme values are expected to be larger in the negative (for
�) and positive (for s) directions than in the opposite direc-
tions. The ratio of the 95% interval length to the standard
deviation of ln Gk̃ and ln G� is substantially lower than the
theoretical value of 3.92 for the Gaussian distribution, which
indicates that the distributions exhibit a slightly broader tail
than the Gaussian. This is a natural result, as the empir-
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FIG. 1. Dynamical characteristics of three-dimensional scaling laws between measures of firm size. (a) The three-dimensional scaling
relationship is illustrated with a typical trajectory of firms in the phase space. Note the use of logarithmic scales. The orange line represents the
scaling line determined from three scaling relations, � ∝ k1.0, s ∝ k1.2, and s ∝ �1.2, where k, �, and s denote the number of trading partners,
number of employees, and annual sales in million yen, respectively. Firms are relatively densely distributed on the line. Black dots connected
by solid lines represent yearly locations of a hypothetical firm in the three-dimensional phase space. When a firm deviates from the scaling
line, it usually moves back toward the line in the following years. (b) Distribution of the 9513 samples for the one-year three-dimensional
displacement starting from the neighborhood (k̃, �, s) ≈ (10, 10, 500). The data points are plotted in the logarithmic scale. Growth rate Gx

for a size measure x is defined by x(t + 1)/x(t ). Red-dashed lines mark the axes where the growth rates of two of the variables are equal
to unity. (c), (d) Distribution of the 1000 samples of one-year displacement starting from the neighborhoods (k̃, �, s) ≈ (10, 1000, 500) and
(10, 1000, 5000), respectively. Data outside the range indicated by cuboid box are truncated and not shown in the figures. Note that the
distribution of growth rates strongly depends on the location in the phase space and is evidently not consistent with a multivariate normal
distribution.

ical distribution of yearly displacements in the logarithms
of the single measures of the system size has been char-
acterized with “tent-shaped” or slightly heavier-tailed than
double exponential Laplace distribution for commercial and
cultural organizations [35,54,70,71]. Note that these empirical
distributions have been approximated differently in previous
studies [70,72,73]. Because the distribution of displacements
from around a point cannot be appropriately fitted by a
Gaussian distribution, the system dynamic may not be ap-
proximated by a simple diffusion equation. This necessitates a

nonparametric method for the simulation of the system’s time
evolution.

B. Simulation method

When transition data over a phase space are abundantly
available and temporal correlations are negligible, a system
can be modelled by phase-space dynamics that are either
defined by a velocity field (when deterministic) or Markov
transition probabilities (when stochastic). In such cases, these

064304-4



DATA-DRIVEN STOCHASTIC SIMULATION LEADING TO … PHYSICAL REVIEW E 106, 064304 (2022)

TABLE I. Descriptive statistics for natural logarithms of growth
rates around different locations in the phase space. SD stands for
standard deviation, 0.025-q and 0.975-q for 2.5- and 97.5-percentiles,
respectively, and 95%-I for 95%-interval length (i.e., the interval
between the 2.5-percentile and 97.5-percentile).

Loc.a Variable Mean SD 0.025-q 0.975-q 95%-I

(b) ln Gk̃ −0.011 0.167 −0.381 0.294 0.675
ln G� 0.001 0.215 −0.511 0.435 0.946
ln Gs −0.025 0.229 −0.553 0.405 0.958

(c) ln Gk̃ −0.003 0.275 −0.468 0.508 0.976
ln G� −0.185 0.605 −2.452 0.223 2.675
ln Gs 0.369 0.855 −0.202 2.841 3.043

(d) ln Gk̃ 0.015 0.244 −0.409 0.467 0.876
ln G� −0.023 0.264 −0.478 0.283 0.761
ln Gs 0.043 0.252 −0.258 0.722 0.980

aLocation in the phase space. See Fig. 1 for the exact locations that
the alphabets indicate.

“equations of motion” can be determined with the method of
analogs by obtaining the estimation of velocity or transition
probability at every point in the phase space. This can be
achieved by searching for the past data of the system that are
close or “analogous” to each point in the space. Our previous
method of obtaining mean flow diagrams in the phase space
[55] was essentially a deterministic version of “phase-space
reconstruction” by the method of analogs. Here we further
develop our previous methodology to allow the simulation of
the stochastic time evolution. Although the method of analogs
was originally presented as a means for assessing the pre-
dictability of future atmospheric states [19,20], the method
has been successfully applied to socioeconomic data such
as GDP relative to international trades [21,22] and texts of
patents [23].

To simulate the time evolution of business firms in the
phase space of log-transformed system sizes by the method of
analogs, we apply the following steps. First, we initialize the
simulation by creating a predetermined number of simulated
firms of a random size at the time step 0. Unless otherwise
mentioned, this number is set to 106, which approximates the
actual number of active firms in the data. Then the stochastic
transitions are repeatedly applied to the firms and they nor-
mally make a firm evolve into a certain point in the phase
space. They may sometimes trigger the disappearance or exit
of a firm with a low probability ranging from less than 1% to
5% per year, depending on the point [55]. The average rate of
disappearance in our data is 3.3% per year. When a simulated
firm is determined to have disappeared and nonexistent, a
new random firm is created at the following time step. These
procedures are repeated until the predetermined number of
time steps, here set to 1000, is reached.

The creation of a new firm is simulated by random
draws from three independent discretized log-normal distri-
butions that best fit to the empirical distributions of respective
system-size measures (i.e., the normalized degree in the trad-
ing network, employee number, and annual sales with each
log-transformed). We justify this adoption of empirical dis-
tributions as the proxy for the distributions of newly created
firms by our lack of unbiased data of firms just at their birth.

We fit a discretized log-normal distribution (with the values
rounded up to integers) to the empirical distributions of the
three system-size variables. We employ data from the year
2016, as it is the year with the largest amount of data for
annual sales in the database; hence, these data are consid-
ered to be the most unbiased representation of all the active
firms in the country (see Appendix A for details). The fitting
is performed via the minimization of Kolmogorov-Smirnov
statistics between the empirical and fitted distributions. The
power-law tail of the empirical distribution is effectively ex-
cluded in this step. Consequently, we obtain the mean μk̃ ≈
1.024 and the standard deviation σk̃ ≈ 1.176 for the natural
logarithm of k̃, μ� ≈ 1.414 and σ� ≈ 1.546 for the natural
logarithm of �, and μs ≈ 4.388 and σs ≈ 1.649 for the natural
logarithm of s. We then employ these parameters to generate
a simulated firm of random size by drawing independent sam-
ples from the log-normal distributions and rounding up the
resulting numbers to integers.

Our simulation of stochastic transitions over the phase
space is essentially the method of analogs [19,20] and con-
forms to the local bootstrap framework [32]. The local
bootstrap was originally proposed to generate bootstrapped
data for a time series, and utilizes the empirical data of
transitions starting from a state that is sufficiently close to
the present state of the simulated system. Here, we adopt
this method according to the following considerations. First,
the method should be nonparametric and without restrictive
assumptions regarding the tail, as we are not provided with
the approximate functional forms of the density of transition
probability (see Fig. 1; also refer to the last paragraph of
Sec. II A). Second, the method should be well-defined for a
mixture of continuous and discretized data. Because our data
are integer-valued, the values of size measures are discrete for
small firms, although they can be considered approximately
continuous for large firms. Finally, the method should be
applicable to multivariate data. A brief review of bootstrap
methods for time series data other than the one we employ is
available in Ref. [74].

The procedures of our simulation method are defined in
formal terms as follows. First, we determine the empirical
data located at the neighborhood of the simulated firm. Let C
denote the (multi)set of empirical data for the yearly time evo-
lution of firms, called a catalog [28,29] (refer to Appendix A
for details on the data compilation). We search the catalog,
including 19 766 521 data of single- and double-year time
evolution of firms, for the neighboring data N (x) around the
location of the simulated firm in the phase space, x. Neighbors
are determined in terms of either the nearest neighbors or data
within a certain distance, depending on the data density near
x. We first determine the set of data points whose distance to
the simulated firm, c∗, is less than d thr [here set to (ln 10)/16],
and if the number of such data points are less than nmin (here
set to 50), we adopt the nmin-nearest neighbors instead. In a
mathematical notation,

N (xc∗ ) ≡ {c ∈ C | ‖xc∗ − xc(0)‖ � max{d thr, rnmin (xc∗ )}},
where

rN (x) = min{r � 0 | |Nr (x)| � N},
Nr (x; C) = {c ∈ C | ‖x − xc(0)‖ � r},
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and the norm symbols ‖ · ‖ and | · | denote the Euclidean
norm and number of elements in a set, respectively. Note
that this “adaptive” change in the number of resampled data
according to the local data density is not unique to ours,
but usual in meteorological predictions using the method of
analogs (e.g., Ref. [28]). Next, we randomly select a single
empirical datum of evolution from the neighborhood N (xc∗ )
and allow the simulated firm to follow the evolution of the
empirical firm. Letting cJ denote the Jth element of N (xc∗ ),
where J is the random variable that takes its values in the set
{1, 2, ..., |N (xc∗ )|} with a uniform probability, the location of
the simulated firm is obtained with the equation:

xc∗ (τ + i) = xc∗ (τ ) + xcJ (i) − xcJ (0), (2)

for i = 1 in most cases; however, i = 2 in special cases,
as we mention below. Because the components of x in the
catalog data are logarithms of integers for � and s, the out-
put of a simulation is generally real-valued instead of being
integer-valued. Although this might seem erratic, the error
is actually not severe as we discuss in Sec. II C. Moreover,
the zones of our interest are primarily where the system size
is substantially larger than 1 and approximately continuously
distributed.

In Eq. (2), i can be equal to 2 and thus the simulation
of a firm proceeds by two time steps if the vector xcJ (1)
contains a not-available (NA) data, i.e., the data are missing
or unobserved in that year. Note that such partially missing
data are usual in empirical data. In our case, for example,
approximately 20% of firms in a year do not have the data of
trading partners. Considering that collecting data of a small
firm would be sometimes difficult, missing data should be
more likely to occur for smaller firms. Therefore, simply
excluding all the NA data might incur the biased represen-
tation of the true time evolution of smaller firms, for example,
when data are missing only in a year, but available in the
previous and following years. To avoid such inaccuracies in
our simulations, we seek, when we identify missing data, to
fully utilize the available data as follows. If every variable
in the vector takes an NA value in the second step (i = 2),
then it is highly likely that the firm in the data disappeared.
There are 655 151 or 3.31% of such data in the catalog. In this
case, the simulated firm is determined to be removed from
our simulation and a new random firm is created in the next
time step. In contrast, if a non-NA number is available for
all the variables in the second year, the firm is considered
to have existed through the period and the simulated firm is
determined to survive. The number of such data is 460 078 or
2.33% of all data. A datum that has one or two available values
of the three system-size measures even in the second year is
excluded in the data compilation (see Appendix A) and does
not exist in the catalog. The data of time evolution that starts
from a partially defined coordinate on the phase space is also
excluded in the compilation process.

Our modifications to the original local bootstrap methods
are twofold. First, we adopt displacements instead of target
states. Using our notation, one substitutes xcJ (i) for xc∗ (τ + i)
in the original local bootstrap method, which is called the
“locally constant operator” in the recent literature [28,29].
Nonetheless, this original method is not considered “physi-
cal” because the displacements do not converge to zero as

the length of a timestep �t tends to zero [28]. The negative
effect of the locally constant operator to the accuracy makes
our method, the “locally incremental operator” [28,29], more
suited for our purpose under the assumption of continuity
on the underlying stochastic process. Second, we adaptively
change the radius of neighborhood spheres. Such adaptive
changes based on the data density should be considered given
our first modification, because firms can accidentally deviate
from the zones where the empirical data exist. Accordingly,
d thr and nmin are “hyperparameters” in our simulations. Al-
though we do not have a definitive basis for determining the
value of d thr and nmin, changes in d thr between (ln 10)/16
and (ln 10)/8 and nmin between 2 and 200 do not make a
discernible difference in our simulations.

In summary, the stochastic time evolution of a firm’s sys-
tem size in a stable environment is simulated by our method
from the firm’s birth to its demise. We first create 106 new
small firms, unless otherwise mentioned. Although the major-
ity of firms survive a time step and often change their size
in either positive or negative directions, some of the firms
disappear. When the number of firms decrease by such disap-
pearance, the same number of new small firms are inserted in
the simulation, such that the number of firms is constantly 106.
When a firm grows by an acquisition, the growth is described
in our database as a normal growth. However, the disappear-
ance of firms by reasons including involvement in mergers
or acquisitions, as well as bankruptcy and planned discon-
tinuation of business, are all recorded in our database. In
total, 72 100 events of mergers and acquisitions are recorded
during the period of our catalog and they explain ≈11% of the
disappearance of firms. Accordingly, both the disappearance
of firms by mergers and the growth of firms by acquisitions
should occur in our simulations by approximately the same
average rate and balance in a long run, although they are not
explicitly paired.

C. Assumptions and accuracy of simulation

Applying our simulation method to the data, we assume the
stationarity of the system, homogeneity of system elements
(business firms), and negligible error in observation. The first
condition of stationarity posits that the system was already at
the stationary state when it was observed. If this is not met,
then a fraction of system elements could enter the zones of
phase space where observed data are insufficient. Simulated
evolution of such elements should heavily rely on the ex-
trapolation of the existing data and thus lead to a substantial
error. The second condition states that the systems do not
have unobserved latent variables that affect their evolution in
the phase space. For example, consider a situation in which
the variance of one-year displacements differs substantially
depending on the types of business that a firm is involved in.
In this situation, which we assume is not the case, our method
could overestimate the fluctuation exhibited by single firms in
a long-term observation. The effect of substantial observation
error in data is similar to that of the heterogeneity of system
elements.

Although some characteristics of the outputs of our sim-
ulation may be inconsistent with the original data, we stress
that the errors are not severe. First, the firm size often become
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FIG. 2. Behavior of size distributions in the stochastic simulations presented as the change in cumulative distribution function (CDF) for
(a) the annual sales, (b) employee count, and (c) normalized number of trading partners. Grey bold curves indicate the empirical distributions
in 2016. Light blue and grey bars at the top right indicate the intervals for which a power-law and stretched exponential distributions fitted
better to the empirical data in 2016. The ranges without empirical data are marked by broken bars. Red and blue dashed curves indicate the
initial conditions of simulations for size distribution of 106 firms, while pale to dark solid curves represent the simulated distribution at the
time step τ equal to 20, 100, 200, 500, and 1000. The initial distributions are log-normal for red, while the empirical samples in 2016 are raised
to the power of 1.2 for blue. The simulated stationary distribution (τ > 500) is remarkably consistent with the empirical distribution in 2016
for the annual sales. Although there are discrepancies between the simulated and empirical distributions for the other two size measures, the
exponents of the power-law tails in the intermediate scales match well between the empirical data and simulation.

noninteger valued according to our simulation method (2). Al-
though this may seem odd, it is necessary to avoid unfavorable
biases from rounding the figure to integers when the firms
are small. The size measure also sometimes becomes smaller
than a unit, but it is typically larger than 0.5. This is because
the applied displacement for a time step is mostly zero or
in the positive direction, as the distribution of displacement
is determined by “analogs.” When a simulated firm has less
than one employee, almost all possible displacements for the
next step are collected from the empirical data of firms with
only an individual employee that evolve to firms with one
or more employees. Note that zero-valued data have been
excluded at the data compilation step (refer to Appendix A).
When the data should be presented as integers, we recommend
rounding the numerical figures after all the simulations are
conducted.

Another artifact can occur at the zones where very few
data are available. Our method defines the transition prob-
ability from every point of the phase space including those
without actual data nearby, by extrapolating the data at the
edge of distribution. Therefore, even if the empirical system
has a stable state in terms of the system-size distribution, a
part of simulated firms may possibly leave the zones with
empirical firms and proceed in the same direction indefinitely,
thereby making the system unstable. Although this may in
principle occur depending on the realization of the data, the
probability that it occurs is low for an ensemble of systems
that has reached the stationarity, as a system at peripheral
zones almost certainly tends towards the central zones of
the system distribution. Although this should be a serious
problem for nonstationary processes, such a problem appears
absent in our simulation results, as discussed in the next
subsection.

D. Relaxation of system-size distribution

Having reviewed the basics of our simulation method, we
explore the limit as τ → ∞ to characterize the stability of
the system in our study. Because our simulation is free of
memories, the stochastic system reaches a single stable distri-
bution as τ → ∞, provided it indeed has such a distribution.
Therefore, we simulate the collective system of firms until no
change is visible in the system size distribution of simulated
firms, i.e., τ = 1000 in this case. The empirical distribution is
compared to the limit distribution of simulations.

The empirical distribution of the size of firms has been
characterized by power-law tails [35,40,61,64–70]. To charac-
terize the empirical distributions of size measures in our data,
we compare the fit of power-law and stretched exponential
(Weibull) distributions as formulated in Ref. [75] to the empir-
ical data within different intervals ranging from a threshold to
infinity. The cumulative distribution function (CDF) P(X > x)
of the two classes of distributions are parameterized as (u/x)b

and exp[−(x/d )c + (u/d )c], where u is the lower threshold.
We employ the Akaike information criterion (AIC) [76] for
the model selection. The results are summarized at the top
right in panels of Fig. 2. The empirical distributions of the
most extreme values are rather consistent with a stretched
exponential decay: data for s � 105 and k � 100 are better
fitted by the stretched exponential distribution with (c, d ) ≈
(0.127, 8.01 × 10−3) and (0.187, 6.43 × 10−3), with the AIC
values lower by 3.6 and 12.5 compared to the power-law
fitting, respectively. The AIC rarely favors the stretched ex-
ponential distribution for �, but data for � � 1200 are better
fitted by the stretched exponential distribution with (c, d ) ≈
(0.166, 6.76 × 10−3), with the AIC value lower by 0.3. In
contrast, data for s � 104, � � 200, and k � 20 are fitted by
power-law distributions with b ≈ 1.00, 1.30, and 1.34 with the
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FIG. 3. Scaling relationships between pairs of system-size measures for the empirical data and simulated stationary state. Plots in the first
row (a)–(c) are obtained from the empirical data in 2016, while those in the second row (d)–(f) are from the results of simulation at the time
step τ = 1000. Plots of 5-, 25-, 75-, and 95-percentiles of the y axis variable conditional on the x-axis variable are vertically shifted to collapse
almost into the curve of the conditional median. The pairs are (k̃, �) for the left column [panels (a) and (d)], (k̃, s) for the middle [panels (b) and
(e)], and (�, s) for the right [panels (c) and (f)]. Dashed lines are placed at the same location in both panels of the same column. Gaps in the
value of the conditional median are evident between the empirical data and simulation results for the pair (k̃, �) in panels (a) and (d) and (k̃, s)
in panels (b) and (e), while no apparent discrepancy exists in scaling exponents between the data and simulation. The plots in panels in the
upper row are from Ref. [40] for comparison. Refer to Ref. [37] for details on the plotting method.

AIC values lower by 42.2, 253.0, and 1635.2 compared to
the stretched exponential fitting, respectively. Therefore, we
conclude that a power law is, at least in an intermediate scale,
a parsimonious description for the empirical distributions of
measures of the system size, including the number of trading
partners (i.e., the degree in the interfirm trading network). On
this basis, we hereafter describe these distributions as heavy-
tailed.

In Fig. 2, the time evolution of the distribution for each
system size measures of firms is presented. The simulations
are initialized with two contrasting distributions marked by
blue and red dashed curves in the figures. The former com-
prises 106 random samples of small firms from the log-normal
distribution assumed for newly created firms, while the latter
comprises 106 empirical samples of firms in 2016 based on the
database, but with the size arbitrarily enlarged by the power
of 1.2. Although the system is initialized with such extremes,
it almost collapses into a single distribution, 500 time steps
after the initialization. Surprisingly, our simulation accurately
predicts the empirical distribution of annual sales marked by
the black bold curve in Fig. 2(a). Compared to the annual

sales, the prediction for the number of employees or trading
partners is apparently not as accurate. However, it still appears
to predict the exponents of the power-law in the intermediate
scale accurately, as the curve for the CDF that indicates the
limit distribution is almost parallel to that for the empirical
distribution in Figs. 2(b) and 2(c). In general, the empirical
system size distribution is fairly well approximated by the
stationary distribution of our simulation.

E. Scalings in stationary distribution

In addition to the system-size distribution measures by
single-size measures, scaling relationships between the mea-
sures of size can be compared between our simulation and the
empirical data. Because the allometric scaling relationships
exert a strong limitation on the joint distribution of firm size
measures, it is appropriate as a criterion of whether the simu-
lation is consistent with the empirical data.

We demonstrate the allometric scaling property of the em-
pirical and simulated firms, as presented in Fig. 3. Empirical
data and results of simulations are presented in panels at the
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FIG. 4. Distributions of fluctuations from average relationships between pairs of system-size measures for the empirical and simulated
firms. Plots in the first (a)–(c) and second (d)–(f) rows are obtained, respectively, from the empirical data in 2016 and the results of simulation
at the time step τ = 1000. Probability distribution functions (PDFs) of normalized size measures (y/〈y|x〉) conditional on eight intervals of x
that are equal in length in a logarithmic scale are plotted. Color gradation from blue to red indicates the smallest to largest values of x. The
x values indicated by the colors are presented in the respective legend above the main plots. The pairs of system-size measures are the same
as in Fig. 3. Dashed lines are placed at the same location in both panels of the same column. There is no obvious discrepancy between the
empirical data and simulation results except for small values of normalized system size. The plots in panels in the upper row are from Ref. [40]
for comparison. Refer to Ref. [37] for details on the plotting method.

top and bottom, respectively. Data of the simulated firms are
obtained from the final time step τ = 1000 in the figures. The
percentiles of the conditional distribution P(y|x) are plotted,
where x and y denote the measures in the horizontal and
vertical axes, respectively. Percentiles other than the median
are vertically shifted in the plots, such that the fact can be
visualized that the curves of every percentile collapse into a
single curve, by the convention followed in Ref. [37]. Note
that the power laws for each pair of system-size measures
are formulated as � ∝ k̃1.0, s ∝ k̃1.2, and s ∝ �1.2. The verti-
cal positions of the conditional medians differ between the
simulation and empirical data, which is consistent with the
slight disagreement between the two as already illustrated in
Fig. 2. Nevertheless, the simulations agree with the empirical
data regarding the values of power-law scaling exponents.
This highly suggests that the conditional distribution exhibits

a universal distribution of fluctuation, P̃ [as in Eq. (1)] for
every pair of k̃, �, and s.

The existence of the universal function of fluctuation, P̃,
is directly verified by actually observing the distribution of
P(̃y|x), where ỹ ≡ y/〈y|x〉med and 〈y|x〉med denote the condi-
tional median. If allometric scaling (1) does hold, then the
conditional distribution of ỹ should be independent of the
value of x. Such conditional densities in the empirical data
and our simulation are plotted in Fig. 4 for each pair of k̃,
�, and s. It can be observed that the results of our simulation
accurately approximate the empirical data. The existence of
the power-law tails of the fluctuation and their exponents are
particularly well approximated.

We conclude that the approximation of the empirical data
by our simulation results is mostly accurate with a few minor
inconsistencies. The number of employees is simulated to be
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slightly larger and the number of trading partners is slightly
smaller compared to the empirical system, leading to a rather
major gap between average k̃–� ratio.

The cause of such inconsistency could be explored by
comparing the actual system against the three assumptions of
our method outlined in the previous section. Among the three
conditions, the incompatibility of our data to the assumption
of the system’s homogeneity might not be negligible. It is
likely that the average k̃–� ratio is different in different indus-
trial sectors. For example, an intermediary firm engaging in
the real estate trading might have a dozen trading partnerships
with only several employees; however, a manufacturing firm
would typically require more employees to have the same
number of trading partners. Simulations based on the data of
a specific industry would require more detailed consideration
on the nonstationary growth and decline of firms in some
industries, which is beyond the scope of our current study.

III. DISCUSSION

We have demonstrated that the multidimensional system-
size distribution of business firms can be well approximated
by the stationary state of a single stochastic process defined
by a stochastic version of the method of analogs applied to a
large-scale data set of the time evolution.

An immediate consequence of our results is a strong sug-
gestion against the possibility that a majority of firms have
long-range temporal correlations in their changes of size. If
such long-range temporal correlations exist in the time series
of the system size (which is characterized by a power-law
tail of correlation function), then a simulation completely
without memories such as ours should typically provide an
inconsistent result with the empirical data. Our results are
therefore consistent with the previous research, which found
no evidence of long-range temporal correlations in firm size
changes when considered collectively [77]. This fact validates
our previous approach [55] that visualizes the mean flows
of firms in the phase space, which implicitly assumes that a
firm size change in a year is independent from that in other
years. Nevertheless, it is not excluded that the size change
of the firms in our study actually exhibit a weak or quickly
diminishing temporal correlation, or even time evolution of
the system size of a minor part of firms has a long-range
memory. Mathematical studies of the local bootstrap method
and its variants determined that these methods can accurately
approximate the stationary distribution of a stochastic system
even in the presence of short-term memories, although this
does not hold if there are long-term memories [30–33].

Given that the dynamics of “average” firms can be
simulated by our method without any memory effect, our sim-
ulation can serve as a null hypothesis that there are no strong
temporal correlations in the system-size changes. When one
can track the evolution of a system or a group of systems,
if there is any inconsistency between the actual data of time
evolution and the results of simulations, then one could state
that some temporal correlations or hidden variables that are
not included in the empirical data should exist. For the system
in our study, considering that the dynamics of �/k̃ might differ
according to the industry that the firm belongs to, we do
not exclude the possibility that the industry classification is

a hidden variable, which may reflect the major heterogene-
ity in the entire collection of firms in a country. Therefore,
classifications of the industry that a firm is involved in can be
considered as a hypothetical factor of the minor gap between
our simulation and the empirical data in future studies. An-
other interesting question is centered on whether the dynamics
of a firm depend on its age, to which we do not have any
answer currently.

The system-size distribution in our simulations is not stable
until τ ≈ 500, which implies that it takes approximately 500
years for the ensemble of firms to reach a stable state. This
result is reminiscent of the hypothesis of self-organized criti-
cality at work in a variety of complex systems [51], including
human society [78], as it would suggest that the system is
near the criticality between stationarity and nonstationarity.
In contrast, one might question the result because the length
of the relaxation time exceeds the timescale for the history
of business firms by modern designs. We would like to note
that some care should be taken to interpret the relaxation
time. First, empirical size distributions of firms typically have
a power-law tail with the exponent between −1.4 and −1
[35,40,61,64–66,68–70] and the exponent is larger than −1 in
rare cases [67]. Therefore, the initial conditions in our simula-
tions, a log-normal distribution and a heavy-tailed distribution
with a power-law tail of exponent larger than −1 (in a CDF),
are rather extreme to represent an empirical system-size distri-
bution of all firms in a geographical area. The relaxation time
would be shorter if we initialize the simulation with a more
realistic size distribution. Second, we have not considered
interactions between firms. When the ensemble of firms is in
an extreme state, it is possible that strong interactions lead the
distribution to a stationary state faster than in the absence of
such interactions. Because our simulations are solely based on
the empirical data near the stationarity, it should be noted that
our method might fail when the model is interpolated for an
ensemble far from the stationarity. Because the country under
our study (Japan) experienced a rapid growth in population
and economy during the post-war period between 1950 and
1980, we propose that the strength of interactions between
firms should be elucidated using a large-scale data set of firms
in that period.

Because our simulation is essentially a Markov process,
we argue that models for the dynamical origin of allometric
scalings in firms should exhibit the Markov property, at least
approximately near their stationarity. We propose that a key
step to such a model would be to determine mathematical for-
mulations for the transition probabilities, which are denoted
by g(t ) conditional on x(t ) (see also Fig. 1). Growth rate
distributions of a single-size measure have been studied for
decades [35,54,70,72,73,79]. However, there are insufficient
studies on the conditional probability distribution of growth
rate that depends on the location on a multidimensional phase
space. Identifying statistical regularities for P(g|x) in empiri-
cal data could be a promising research direction.

Although the simulations in our study are three-
dimensional, two-dimensional simulations are certainly pos-
sible by ignoring a variable. We expect that the main
consequence of variable omissions would be a faster conver-
gence to the stationary distribution in simulation results in
our case. As suggested by empirical examples of P(g|x) at
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different locations x (see Fig. 1 and Table I), the distribution of
displacements can be heavier-tailed for atypical states located
distantly from the “scaling line” compared to typical states
on the “scaling line.” This implies that a system has to be
distant from typical states before a large yearly displacement
occurs. Nevertheless, by neglecting a variable, we sometimes
cannot distinguish an atypical state from typical ones. This
in turn would allow a part of simulated systems to “fly” a
long distance instantly, thus accelerating the convergence to
the stationary distribution.

It is important to note that our proposed method is not
specific to business firms and can be applied, rather univer-
sally, to any type of system with a large amount of observed
time series. Although the method of analogs has been known
to perform well with deterministic time series, our results
are encouraging about using the method also for simulating
time series of stochastic nature. Considering that the distinc-
tion between deterministic chaos and stochastic processes is
sometimes not easily performed [80–86], the applicability of
the method of analogs to both deterministic and stochastic
processes is much advantageous as difficulties in recognizing
or rejecting the determinism can be circumvented. The three
assumptions of the method, which we mentioned earlier in
Sec. II C, are those also referred to as the conditions for apply-
ing the method of analogs to deterministic time series [26,29].
A disagreement between the simulation results and empirical
data is sufficient to reject at least one of these assumptions.
Therefore, our approach may be beneficial in detecting long-
range memories, nonstationarity, or large observation errors
in general empirical time-series data, regardless of the level
of determinism in the underlying processes.
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APPENDIX A: DATA COMPILATION

We use the database of the summarized description of
Japanese business firms provided by Teikoku Databank, Ltd.,
Japan (TDB), named COSMOS 2. A list of anonymized firms
that were recognized as being active by TDB at the beginning
of each year during the 1994–2018 period was available to
us, along with their financial status (annual sales, capital, and
profits), location, industrial classification, direct buying and
selling trading partners, etc.

We first obtain a set of quantities that indicate the size
of a firm in a year, namely the total number of selling and
buying trading partners, the number of employees, and the
annual sales in million yen, which are denoted by k, �, and s,
respectively. Note that the number of trading partners amounts
to the sum of in- and out-degree of a firm in the trading
network. These firm size measures are all integer-valued in the
database. The three quantities have been intensively studied
in previous research [37,40,55] and found to follow heavy-
tailed distributions and relate to each other with “allometric”
power-law scaling [37,40]. Records of quantities that are not
available are left as such (NA). We exclude financial or bank-
ing firms and governmental entities based on their industrial
classification in our data compilation process. These firms are
also excluded from the count of trading partners. This is to
filter the sales and trades that are referred to for the purpose
of accounting, but inconsistent with the ordinary use of the
words. Here we use the term “sales” for the amount of money
that a firm receives in exchange for their goods and services
in a year, and a “trade” for such an exchange between two
firms. The sales figure published at the end of a 12-month
fiscal year is adopted as the annual sales of the calendar year in
which the fiscal year was closed. When the fiscal year was not
12-month long or there existed more than one end of a fiscal
year in one year, sales figure for the year is left to be NA.
In contrast, for the count of employees and trading partners
and the industrial classification, we consider that the records
represent the state of a firm in the previous calendar year of the
timestamp of the data (i.e., January of each year). When zero
values occur in the count of trading partners, we replace them
with NAs. At the end of these processes, we obtain a triplet of
matrices tabulating the size of all the firms during the studied
period, measured by each of the three different size indices.
Accordingly, the number of firms with full record of three
system-size measures is 8.470 × 105 per year on average dur-
ing the 25-year period between 1993 and 2017. The number
of firms with partial record of the three measures of system
size is 4.181 × 105 per year on average in the same period,
of which 2.852 × 105 lack the data on trading partners. The
number of unique firms recorded in this period is 2 515 679.

We then compile a “catalog” [28,29] that represents the
randomized short-term evolution of firms (i.e., growth rates
measured by k, �, and s) in the period between 1993 and
2017. Because the evolution of firms indicated by k, �, and
s can be conceived as a realized stochastic process in three-
dimensional phase space, we hereafter refer to the changes of
the position of a firm in the phase space as transitions.

First, the number of trading partners is normalized accord-
ing to the number of recorded firms in the trading network.
This process makes the number of trading partners in a year
comparable to that in another year. The details and rationales
of the process is discussed in Appendix B. The normalized
degree is denoted as k̃. NA values are kept as such during this
process.

Next, we obtain the catalog, denoted by C, the list of
empirical transitions over the three-dimensional phase space.
We search the triplet of matrices for pairs of a firm and a year
for which k̃, �, and s all have non-NA real values. We can then
obtain a tentative list of single-year transitions over the phase
space that start from a fully defined coordinate without NA
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values. We neglect original records of the year and firm iden-
tity in this list to aggregate all the available data. The transition
data that end with NA values indicate either the discontinued
activity of a firm or an active firm that was just unobserved.
We note that the frequency of single-year missing data of a
firm is singularly high compared to the missing data of a firm
for more than one consecutive year. To ensure that NA values
at the end of a transition indicate the discontinuing activity
of a firm, the time range of the evolution data is extended to
accommodate three consecutive years if NA values exist at the
end of a 1-year evolution. If some, but not all, of the data at
the end of evolution are NA values after this 1-year extension
of time range, then we simply ignore the data from the list
of empirical transitions to ensure that the transition data end
with either all NA or all non-NA values. We thus obtain a
catalog for the transition of firms over the phase space during
a single- or double-year range. This lengthening of transition
data does not induce biased representation of the original data
as all the data listed in the catalog are derived from mutually
exclusive parts of the original matrices. It is known that the
varying length of the transition data sometimes improves the
accuracy of the class of methods we employ [87].

The final catalog contains a total of 19 766 521 entries of
single- and double-year transitions. The numbers of single-
and double-year transition data are 18 651 292 and 1 115 229,
respectively. The double-year transitions end with either a
fully defined coordinate (in 460 078 entries) or all-NA values
(in 655 151 entries). The latter indicates the disappearance
of a firm owing to various reasons including a merger by
other firms. Although we do not have access to a data set
that specifies the reasons of disappearance for each single
firm, the recorded number of events of merger and acqui-
sition in the 1994–2017 period, during which the acquired
firms in the catalog should have disappeared, is 72 100. This
amounts to 11.01% of all events of firm disappearance in the
catalog.

For applications in the actual simulations, we log-
transform the value of three firm size measures (k̃, �, and
s). One reason for this is that distributions of these firm
size measures are typically heavy-tailed and the increasingly
sparse data at the tail would severely affect the effectiveness of
our simulation method. With the logarithms, one can suppress
the appearance of heavy tails in the distribution. Moreover,
the magnitude of relative fluctuation of firm sizes has been
reported to be only weakly dependent on the size, particularly
for large ones. Because this dependency is often characterized
by a power law with the exponent typically ranging between 0
and −0.25 [54,70], the evolution of firm size can be regarded
as rather multiplicative. Nevertheless, the method that we will
adopt here is additive [see Eq. (2)], and this gap can be filled
by adopting logarithms.

APPENDIX B: DEGREE NORMALIZATION

Here we discuss the details and rationale for the normaliza-
tion of the number of trading partners. The number of trading
partners (k) is the sum of the numbers of “selling” partners
that a firm sells to and “buying” partners that a firm buys from
in a year and amounts to the sum of in- and out-degrees in
the interfirm trading network in terms of network science. In a

region without severe economic or demographic fluctuations,
the number of employees (�) and annual sales (s) in local
currency may not require further normalization. We believe
that this was the case for Japan during the 1993–2017 period
under this study, which is evidenced by the marked stability of
the distributions of � and s during the period [40]. However,
the degree distribution should be substantially dependent on
the size of the observed interfirm trading network, which
is almost continuously increasing [Fig. 5(a)]. In Fig. 5(b),
we plot percentiles of the degree distribution relative to the
values in 1993. Fortunately, we observe that all the 75-, 95-,
99-, 99.9-, and 99.99-percentiles of the distribution of k are
increasing at nearly the same rate. Our observation is further
verified by the plots of the CDFs for the degree in each year,
as observed in Fig. 5(c), which are almost parallel to each
other with the exponent of the power law in the intermediate
scale unchanged. Consequently, we can normalize k by a
factor that only depends on the year and regardless of a firm’s
size.

The behavior of the aforementioned empirical degree dis-
tributions can be explained as follows. Assume that the firms
in our database in each year are randomly sampled from the
constant “true” population of all the active business firms in
the region in an unbiased manner, and that the proportion
of sampling continually increases with the years. Then, the
series of seeming degree distributions should change in the
same way as they do in the empirical data, because a fixed
proportion of the true set of trading partners for a firm are
sampled for every firm in a year. Simultaneously, the propor-
tion of sampled firms should be proportional to the number
of observed firms by definition. Therefore, it is hypothesized
that we can normalize the total number of trading partners,
kc(t ), of a firm c in a year t , by the number of recorded firms
in each year. To allow an intuitive interpretation, we represent
the normalized number k̃c(t ) with the 1-degree-equivalent unit
in 2016:

k̃c(t ) ≡ N2016

Nt
kc(t ),

where the number of observed firms, Nt , in a year t is deter-
mined by the number of nonfinancial and nongovernmental
firms with non-NA and nonzero degree values. It can be
observed that the CDFs of normalized degree approximately
collapse into a single function by the normalization [see
Fig. 5(d)], which validates our normalization method.

The effects of this normalization can be observed from
differences between the simulation results using catalogs with
and without the degree normalization. The transient distribu-
tions of k in the simulation based on the catalog with the
raw number of trading partners are plotted in Fig. 5(e). The
stationary k-distribution without normalization substantially
deviates from the empirical one to the right side, while the
adoption of the catalog with the normalized degree (k̃) leads
to a stationary distribution close to the empirical k̃-distribution
[see Fig. 2(c)]. Therefore, we can conclude that the degree
normalization exerts a substantial effect on the results of our
simulations by the violation of the assumption of our simula-
tion method, which states that the system under this study is
stationary.
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FIG. 5. Nonstationary increase in data and degree normalization for the apparently growing interfirm trading network and its effect on the
simulation results. (a) The number of firms and trading links observed in the data for every year between 1993 and 2017. The number of trading
links increased by more than two-fold during the period. (b) 5-, 25-, 50-, 75-, 99-, 99.9-, and 99.99-percentiles of the degree distribution (the
distribution of the number of trading partners, k) in years between 1993 and 2017, relative to the 1993 data. Paler colors mark lower percentiles.
The curves for higher percentiles approximately match each other. (c), (d) Original and normalized degree distributions for every year between
1993 and 2016. CDFs for the range of degree between 101 and 103 are shown in the main plots, while the whole range are shown in the
inset plots. Older data are plotted with paler red. A tick indicates two orders of magnitude in the inset plots. (e) The behavior of simulated
distribution of the number of trading partners without normalization, shown as the change of CDF. Grey bold curve indicates the empirical
distribution in 2016. Red dashed curve indicates the log-normal distribution for the initial condition, while pale to dark solid curves represent
the simulated distribution at the time step τ equal to 10, 20, 50, 100, 200, 500, and 1000. The simulated stationary distribution (τ > 500)
evidently disagrees with the empirical distribution in 2016.

[1] J. D. Murray, Mathematical Biology I: An Introduction, 3rd ed.
(Springer-Verlag, New York, 2002).

[2] L. Edelstein-Keshet, Mathematical Models in Biology
(Society for Industrial and Applied Mathematics, Philadelphia,
2005).

[3] H. D. I. Abarbanel, Analysis of Observed Chaotic Data, Institute
for Nonlinear Science (Springer, New York, 1996).

[4] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, 2nd
ed. (Cambridge University Press, Cambridge, UK, 2003).

[5] H. C. Nguyen, R. Zecchina, and J. Berg, Adv. Phys. 66, 197
(2017).

[6] N. Masuda, M. A. Porter, and R. Lambiotte, Phys. Rep. 716-
717, 1 (2017).

[7] S.-I. Kumamoto and T. Kamihigashi, Front. Phys. 6, 20
(2018).

[8] J. D. Murray, Mathematical Biology II: Spatial Models and
Biomedical Applications, 3rd ed. (Springer-Verlag, New York,
2003).

[9] S. P. Hubbell, in The Unified Neutral Theory of Biodiversity and
Biogeography, edited by S. A. Levin and H. S. Horn (Princeton
University Press, Princeton, NJ, 2001).

[10] W.-X. Zhou and D. Sornette, Eur. Phys. J. B 55, 175 (2007).
[11] R. A. Armstrong and R. McGehee, Am. Nat. 115, 151 (1980).
[12] W. Ebenhöh, Theoretical Population Biology 34, 130 (1988).
[13] P. L. Krapivsky, S. Redner, and F. Leyvraz, Phys. Rev. Lett. 85,

4629 (2000).
[14] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Phys.

Rev. Lett. 85, 4633 (2000).
[15] G. Bianconi and A.-L. Barabási, Phys. Rev. Lett. 86, 5632

(2001).
[16] E. Bedolla, L. C. Padierna, and R. Castañeda-Priego, J. Phys.:

Condens. Matter 33, 053001 (2021).
[17] A. Chattopadhyay, E. Nabizadeh, and P. Hassanzadeh, J. Adv.

Model. Earth Syst. 12 (2020).
[18] S. Arik, C.-L. Li, J. Yoon, R. Sinha, A. Epshteyn, L. Le, V.

Menon, S. Singh, L. Zhang, M. Nikoltchev, Y. Sonthalia, H.

064304-13

https://doi.org/10.1080/00018732.2017.1341604
https://doi.org/10.1016/j.physrep.2017.07.007
https://doi.org/10.3389/fphy.2018.00020
https://doi.org/10.1140/epjb/e2006-00391-6
https://doi.org/10.1086/283553
https://doi.org/10.1016/0040-5809(88)90038-X
https://doi.org/10.1103/PhysRevLett.85.4629
https://doi.org/10.1103/PhysRevLett.85.4633
https://doi.org/10.1103/PhysRevLett.86.5632
https://doi.org/10.1088/1361-648X/abb895
https://doi.org/10.1029/2019MS001958


KOBAYASHI, TAKAYASU, HAVLIN, AND TAKAYASU PHYSICAL REVIEW E 106, 064304 (2022)

Nakhost, E. Kanal, and T. Pfister, in Advances in Neural Infor-
mation Processing Systems, Vol. 33, edited by H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Curran
Associates, Red Hook, NY, 2020), pp. 18807–18818.

[19] E. N. Lorenz, Bull. Am. Meteorol. Soc. 50, 345 (1969).
[20] E. N. Lorenz, J. Atmos. Sci. 26, 636 (1969).
[21] M. Cristelli, A. Tacchella, and L. Pietronero, PLoS One 10,

e0117174 (2015).
[22] A. Tacchella, D. Mazzilli, and L. Pietronero, Nat. Phys. 14, 861

(2018).
[23] A. Tacchella, A. Napoletano, and L. Pietronero, PLoS One 15,

e0230107 (2020).
[24] T. M. Hamill and J. S. Whitaker, Monthly Weather Rev. 134,

3209 (2006).
[25] L. Delle Monache, F. A. Eckel, D. L. Rife, B. Nagarajan, and

K. Searight, Monthly Weather Rev. 141, 3498 (2013).
[26] F. Cecconi, M. Cencini, M. Falcioni, and A. Vulpiani, Am. J.

Phys. 80, 1001 (2012).
[27] J. D. Farmer and J. J. Sidorowich, Phys. Rev. Lett. 59, 845

(1987).
[28] R. Lguensat, P. Tandeo, P. Ailliot, M. Pulido, and R. Fablet,

Mon. Weather Rev. 145, 4093 (2017).
[29] P. Platzer, P. Yiou, P. Naveau, P. Tandeo, Y. Zhen, P. Ailliot, and

J.-F. Filipot, J. Atmos. Sci. 78, 2117 (2021).
[30] M. H. Neumann, Ann. Statist. 26, 2014 (1998).
[31] M. H. Neumann, Statistics 36, 33 (2002).
[32] E. Paparoditis and D. N. Politis, J. Stat. Planning Infe. 108, 301

(2002).
[33] V. Monbet and P.-F. Marteau, J. Stat. Plan. Infer. 136, 3319

(2006).
[34] P. Yiou, Geosci. Model Dev. 7, 531 (2014).
[35] K. Okuyama, M. Takayasu, and H. Takayasu, Physica A 269,

125 (1999).
[36] Y. U. Saito, T. Watanabe, and M. Iwamura, Physica A 383, 158

(2007).
[37] H. Watanabe, H. Takayasu, and M. Takayasu, Physica A 392,

741 (2013).
[38] G. B. West, in Scale: The Universal Laws of Growth, In-

novation, Sustainability, and the Pace of Life in Organisms,
Cities, Economies, and Companies (Penguin, New York, 2017),
Chap. 9.

[39] C. Dang, Z. (Frank) Li, and C. Yang, J. Bank. Finance 86, 159
(2018).

[40] Y. Kobayashi, H. Takayasu, S. Havlin, and M. Takayasu,
Entropy 23, 168 (2021).

[41] L. G. A. Alves, H. V. Ribeiro, E. K. Lenzi, and R. S. Mendes,
PLoS One 8, e69580 (2013).

[42] L. Alves, H. Ribeiro, E. Lenzi, and R. Mendes, Physica A 409,
175 (2014).

[43] M. Kleiber, Physiol. Rev. 27, 511 (1947).
[44] W. R. Stahl, Science 150, 1039 (1965).
[45] K. Schmidt-Nielsen, Scaling: Why is Animal Size So Im-

portant? (Cambridge University Press, Cambridge, UK,
1984).

[46] V. M. Savage, J. F. Gillooly, W. H. Woodruff, G. B. West, A. P.
Allen, B. J. Enquist, and J. H. Brown, Functional Ecol. 18, 257
(2004).

[47] O. Arrhenius, J. Ecol. 9, 95 (1921).
[48] M. L. Rosenzweig, Species Diversity in Space and Time

(Cambridge University Press, Cambridge, UK, 1995).

[49] G. B. West, J. H. Brown, and B. J. Enquist, Science 276, 122
(1997).

[50] K. Yakubo, Y. Saijo, and D. Korošak, Phys. Rev. E 90, 022803
(2014).
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