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Critical behavior of cascading failures in overloaded networks
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While network abrupt breakdowns due to overloads and cascading failures have been studied extensively,
the critical exponents and the universality class of such phase transitions have not been discussed. Here, we
study breakdowns triggered by failures of links and overloads in networks with a spatial characteristic link
length ζ . Our results indicate that this abrupt transition has features and critical exponents similar to those of
interdependent networks, suggesting that both systems are in the same universality class. For weakly embedded
systems (i.e., ζ of the order of the system size L) we observe a mixed-order transition, where the order parameter
collapses following a long critical plateau. On the other hand, strongly embedded systems (i.e., ζ � L) exhibit a
pure first-order transition, involving nucleation and the growth of damage. The system’s critical behavior in both
limits is similar to that observed in interdependent networks.
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I. INTRODUCTION

Cascading failures and system collapse due to overloads
have been modeled and studied within a network frame-
work [1,2]. Even a small failure (e.g., deliberate attacks,
natural disasters, or random malfunctions) may spread the
overloads in relevant infrastructure such as power grids, trans-
portation networks, and communication systems, producing
a partial or total collapse. Thus, understanding the laws of
cascading failures due to overloads (CFO) is crucial for en-
suring the operation of infrastructure and services that we
rely on every day. Infrastructure is often embedded in two-
or three-dimensional space [3–6] and, far from ideal systems
such as lattices, many real-world networks present a character-
istic link length ζ [7–9]. Several studies [5,10–13] model this
property with a two-dimensional (2D) lattice where the sites
are the nodes of the network and link lengths are chosen from
an exponential distribution, P(r) ∼ exp(−r/ζ ) (the so-called
ζ model), allowing dimension to change from two, for small
ζ (short links), to infinite for large ζ (i.e., of order of the
system linear size L) [8]. Thus, in the ζ model, the parameter
ζ represents the strength of the spatial embedding.

A fundamental model for CFO is the one developed by
Motter and Lai (ML) [1] that introduced the concept of load
and overload for a node. In this model, load is defined as the
number of shortest paths that pass through the node, and is
considered a measure of relevance in the transmission of some
quantity (e.g., information or energy) throughout the system.
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They also defined a threshold called capacity, proportional to
the initial load and representing the maximum load that a node
can hold. Above the capacity, the node becomes overloaded
and fails. However, the shortest path is not always the optimal
path [14]. A reasonable modification of this model is defining
weighted networks, where links have associated weights that
may indicate, for instance, the time (or cost) that it takes to
traverse a link. In this way, optimal paths, which represent the
paths with minimal travel time (or cost) between nodes, are
considered to define the loads.

Currently, the critical behavior and the universality class
of CFO’s phase transition have not been systematically stud-
ied. Here, we study this phase transition in both, spatial ζ

model [10] and in Erdős-Rényi (ER) [15–17] networks, find-
ing indications that it belongs to the same universality class as
percolation of interdependent networks [18–23]. We observe
that for weakly or non-spatially-embedded systems, such as
ER networks or the ζ model for large ζ (i.e., ζ ∼ L), there
exists a mixed-order transition, similar to interdependent ER
networks [18,19,21,24]. At this abrupt transition, we find a
long-term plateau in the order parameter characterized by crit-
ical exponents. In contrast, for strongly embedded networks,
(i.e., ζ � L), we observe a pure first-order transition caused
by nucleation of a random damage, a behavior also exhibited
by interdependent lattices with finite-length dependencies or
spatial multiplex networks [24,25].

II. MODEL

Our system consists of a 2D lattice of size N = L × L
with link lengths r exponentially distributed, i.e., P(r) ∼
exp(−r/ζ ) (ζ model [10]), and average degree 〈k〉 (self- or
multiple connections are not allowed, and we assume periodic
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FIG. 1. Model demonstration. (a) A spatially embedded network
with L = 5, 〈k〉 = 4, and ζ = 5. The load is represented by colors,
increasing from dark to light black. (b) Randomly removed links
(1 − p = 0.21), represented by gray dashed lines, produce changes
in the node’s loads. For a green node i, L1

i /L0
i � 1 + α, i.e., the load

does not exceed the node’s capacity, while for a red node j, L1
j /L0

j >

1 + α, and the node becomes overloaded and fails. (c) Failed nodes
(red crosses) are removed altogether with their links, producing new
overloads that continue the cascade process. The tolerance for this
network is α = 2.

boundary conditions). Regarding the CFO dynamics, we study
the ML model [1] in weighted networks, with positive weights
that follow a Gaussian distribution. We define the load of
node i, Li(t ) ≡ Lt

i , as the number of optimal paths between all
pairs of nodes, excluding i, that pass through i at time t . The
maximum load that a node can sustain at any time is given
by its capacity, Ci = L0

i (1 + α), which is proportional to the
initial load L0

i . The parameter α is the system’s tolerance, and
it represents the resilience of nodes to failure.

At t = 1, we randomly remove a fraction 1 − p of links,
p ∈ [0, 1]. This produces changes of the optimal paths
throughout the network, affecting the node’s loads, which
may generate successive failures due to nodes that become
overloaded, in a cascade manner (see Fig. 1). After removing
the links, we advance one unit of time and compute the new
loads. For t > 1, node i fails if Lt

i > Ci, we remove failed
nodes and their links, and advance one unit of time. We repeat
the process until there are no more failures in the network.

The model presented above is not solvable analytically
because of spatial constraints, but it can be analyzed via ex-
tensive time-consuming numerical simulations. To reduce the
sensitivity of the results and produce smoother and consistent
curves for a single realization, randomness is somewhat re-
duced. When performing percolation using a series of 1 − p
values, we proceed as follows: If Ep1 is the set of links that
have been randomly removed for 1 − p1, then, for a larger
value 1 − p2, we remove the same set of links Ep1 and addi-
tional random links until we reach the value 1 − p2.

III. RESULTS

We analyze the relative size of the giant component of
functional nodes at the end of the cascading process, S(p) ≡
S, for weak and strong spatial embedding, i.e., for large and
small ζ , respectively. This is shown in Fig. 2. In both cases,
we find that the system undergoes an abrupt transition at a
critical value pc, such that S(p � pc) > 0. Nevertheless, we
can distinguish two different behaviors at the vicinity of these
transitions. For weak spatial embedding [ζ = 100, Fig. 2(a)]
the system approaches criticality, for p > pc and S > 0,
with a clear curvature that is absent for strong embedding

(a) (b)

FIG. 2. Giant component of functional nodes, S, as a function of
the fraction of nonremoved links, p, for (a) ζ = 100 and (b) ζ = 3.
In the inset of (a), we show a dashed line with slope β = 1/2,
which characterizes the system’s power-law behavior at criticality
for large ζ . The slight deviation from a power-law (with exponent
1/2) behavior observed when the system is close to criticality (left
side of the inset) is due to finite-size effects, and should improve
as we increase the linear size of the system, L. Results in the main
plots correspond to individual realizations, while the inset plot is
obtained by averaging S − Sc over ten runs at each value of p − pc.
The remaining network parameters are L = 350 (for the ER network
N = 122 500 = 3502), 〈k〉 = 4, and α = 2.

[ζ = 3, Fig. 2(b)]. We characterize the weakly embedded
system through a generalization of the critical exponent β

for abrupt transitions [25,26], with respect to S(pc) > 0:
S(p) − S(pc) ∼ (p − pc)β , p � pc. In the inset of Fig. 2(a),
we show that β ∼= 0.5 for ζ = 100, coinciding with the usual
mixed-order transition and with interdependent random net-
works [25]. In contrast, for a strong spatial structure [ζ = 3,
Fig. 2(b)], we do not observe a curvature with a critical expo-
nent, but just a linear decrease followed by an abrupt collapse,
suggesting a pure first-order transition as in interdependent
spatial networks (see, e.g., Fig. 1 in Ref. [22]).

The critical threshold pc and the mass of the giant com-
ponent at pc, Mc = NSc, may vary between realizations (see
Fig. 1 of the Supplemental Material [27]). We study their fluc-
tuations, σ (pc) = (〈pc

2〉 − 〈pc〉2)1/2 and σ (Mc) = (〈Mc
2〉 −

〈Mc〉2)1/2, on networks with long-range connectivity links
(ζ = L) and different system sizes. Gross et al. [6] found for
interdependent networks with long-range dependencies that a
finite-size scaling analysis yields the relations σ (pc) ∼ L−1/ν ′

,
ν ′ = 2/d , and σ (Mc) ∼ Ld ′

f , d ′
f = 3d/4, where d is the spatial

dimension. In Fig. 3, we show that for the ML overload
model [1] there exists a similar scaling with the linear sys-
tem’s size L, and with the same exponents (i.e., for d = 2,
ν ′ = 1, and d ′

f = 3/2).
Continuing the comparison between spatial and nonspatial

networks, we now observe how the CFO evolves while reach-
ing the final state, close to criticality. In Fig. 4(a), we show
the time evolution of S for ζ = 100 and several values of p,
with p � pc. The total time of the cascade, τ , increases as the
system gets closer to criticality [see also Fig. 5(a)]. These cas-
cades also show a plateau in S, where a microscopic amount
of failures [Fig. 4(b)] keeps the cascades going on with a
branching factor η ≈ 1 [Fig. 4(c)], for a number of time steps
of the order of N1/3 [see Fig. 5(b)]. Due to finite-size effects,
this phase does not last forever and, eventually, the amount
of failed nodes starts to increase because of accumulated
damage in the system, leading to an abrupt collapse [20,21].
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(a) (b)

FIG. 3. Fluctuations of (a) the critical threshold σ (pc ) and (b) the
mass of the giant component at criticality σ (Mc ). The dashed lines
correspond to a power-law fit to the data, and we inform the slopes
and their standard deviation. The scaling exponents obtained for
mean-field networks with ζ = L are consistent with those evaluated
for interdependent networks in two dimensions [6], ν ′ ∼= −1 and
d ′

f
∼= 1.5. Results for each value of L correspond to an average of

40 independent realizations.

In Fig. 4(d) we show the spatiotemporal distribution of the
failures just above criticality, where failures spread at all times
over the whole network. This occurs because optimal paths
that disappear after some failures are likely to be replaced
by paths that pass through distant nodes due to long-range
connections, and then these distant nodes become overloaded.

The process for spatial networks [ζ = 3, Figs. 4(e)–4(h)]
is strikingly different. Since the typical length of links is
short (compared to L), initial failures due to overloads may
concentrate and spread radially to close neighbors [Fig. 4(h)].
Eventually, near criticality, overloads and failures create a

(a) (b)

FIG. 5. Scaling behavior of the average total time of the cascade,
〈τ 〉, for ζ = 100. The dashed lines correspond to a power-law fit of
the curves, and we inform the slopes and their standard deviation.
(a) 〈τ 〉 scales with p near criticality, pc − p (p < pc), with an expo-
nent ∼= − 0.5 (average of ten realizations). (b) 〈τ 〉 scales with system
size N , at criticality, with an exponent ∼=1/3 (average of 20 real-
izations up to N = 90 000, and of 15 runs for N = 122 500). These
results are similar to those found for interdependent networks [21].
Error bars are included for each point of both curves.

hole of failed nodes within the functional giant component,
which grows spontaneously and spreads throughout the entire
system, causing its collapse. This phenomenon is known as
nucleation, and it has also been observed in interdependent
lattices with finite-length dependency links [20,22] and in
spatial multiplex networks [10,11]. In addition, the complete
disintegration of the giant component develops in a prolonged
time interval with a relatively short plateau stage and a more
gradual collapse [in contrast to weakly embedded systems, as
seen in Fig. 4(a)].

FIG. 4. Dynamic behavior of overload failures model near criticality, for networks with ζ = 100 (top figures) and ζ = 3 (bottom figures).
From left to right: (a) and (e) Evolution of the giant component relative size S, with t the number of iterations. (b) and (f) Instant failures Ft .
Note the microscopic values and the flatness increment in (b), in contrast to that in (f). (c) and (g) Moving average of the branching factor ηt . ηt

stays for a long time around 1, indicating critical branching. (d) and (h) Spatiotemporal propagation of the failures. Colors represent the time
of node failure close to criticality for (d) p = 0.714 (ζ = 100) and (h) p = 0.976 (ζ = 3, the color map is centered to improve visualization).
It is clearly seen in (h) that short-range connections in strongly embedded networks originate a spatial-radial spreading of failures, in a process
known as nucleation (see also Ref. [28]). This is in contrast to (d) where damage spreads to any location due to long-range links (ζ = 100).
Legends in [(a)–(c)] are the same, as well as in [(e)–(g)].
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IV. DISCUSSION

In this paper we study the critical behavior and exponents
that characterize the steady state and the dynamics of cascad-
ing failures due to overloads, governed by the ML model and
triggered by randomly removing a fraction of links, in both
strongly and weakly spatially embedded 2D networks, which
have a typical link length ζ .

For the weakly or nonembedded systems we observe a
usual mixed-order transition similar to that of interdependent
random networks, with a critical exponent value of β = 0.5.
Furthermore, fluctuations of the quantities pc and M(pc)
present exponents also in agreement with those of interdepen-
dent networks. These exponents characterize the correlation
length and the fractal fluctuations of the order parameter. In
contrast, strongly embedded networks do not show a curva-
ture (singularity) in the order parameter near pc, but rather a
linear decrease, as in interdependent spatial networks, which
is a characteristic of pure first-order transitions. Regarding
dynamical aspects near the transition, weakly and strongly
embedded systems also show a strikingly different behavior.
Studying the spatiotemporal propagation of failures, we find
that for large ζ the failures spread through the whole network
at all times. In contrast, for small ζ , initial failures are likely
to initiate in a random location and propagate to nearby sites,
yielding to a nucleation spreading process that is observed
as well in spatial interdependent and multiplex networks [20]
(see also the recent study by Choi et al. [29]).

Our results regarding the temporal evolution of CFO and
those corresponding to critical exponents at the steady state,
for both small and large ζ , show a remarkable similarity to
those of pure percolation (in the absence of overloads) of
interdependent networks, for short- and long-range depen-
dencies, respectively. Therefore, we suggest that the overload
mechanism of failure propagation plays a similar role to that
of dependencies in networks, and that both systems may be-
long to the same universality class.

We recognize that our study is limited to the model of
cascading failures proposed by Motter and Lai, in which the
shortest or optimal paths play a crucial role in determining
the loads of the nodes and thus intervene in the dynamics of
the process. Further research exploring diverse failure propa-
gation models would help to extend the scope of the results
found in this paper. For instance, one interesting model to
analyze would be the direct current approximation of power
grids, where nodes (generators, loads, or transmission nodes)

satisfy the Kirchhoff equation, which will be our aim in a
future study.

In addition, the time-costly numerical simulations that al-
lowed us to carry out this study also limit us in the amount of
results that we can produce in a certain amount of work time.
In this way our results, which are only performed for spatial
dimension d = 2, represent an indication that overloads in
networks and interdependent networks belong to the same
universality class. However, it would be interesting to explore
higher dimensions and analyze the dependence of the critical
exponents on d , and test whether higher dimensions show also
a similar behavior to that of Ref. [6] [Figs. 2(a) and 3(a)] for
the fluctuations of the critical quantities pc and Mc. Related to
this, and considering our limitation to study systems up to a
certain size, an analysis on how critical exponents approach
the values obtained in this work as the size of the system
increases would make our results more robust.

Cascading failures due to overloads can dramatically
alter the functioning of relevant infrastructures (e.g., elec-
trical power grids, and communication and transportation
networks). Thus, researchers from various disciplines are
interested in developing a well-founded framework for un-
derstanding how such catastrophic processes behave and
what are their microscopic origin. We find that when long-
range links appear the cascade of failures occurs throughout
the system, while for short-range links (with respect to
the system size) a nucleated damage occurs and propagates
radially throughout the system. Our study could therefore
be useful for devising and building more resilient infras-
tructures, in order to avoid or mitigate such catastrophic
breakdowns.

ACKNOWLEDGMENTS

I.A.P., C.E.L. and L.A.B. wish to thank to UNMdP (EXA
1056/22), FONCyT (PICT 1422/2019) and CONICET, Ar-
gentina, for financial support. S.H. wishes to thank the
Israel Science Foundation (Grant No. 189/19), the Binational
Israel-China Science Foundation (Grant No. 3132/19), the
NSF-BSF (Grant No. 2019740), the EU H2020 project RISE
(Project No. 821115), the EU H2020 DIT4TRAM, and the EU
H2020 project OMINO (Grant No. 101086321) for financial
support. This research was supported by a grant from the
United States-Israel Binational Science Foundation (BSF),
Jerusalem, Israel (Grant No. 2020255).

[1] A. E. Motter and Y.-C. Lai, Phys. Rev. E 66, 065102(R)
(2002).

[2] A. E. Motter, Phys. Rev. Lett. 93, 098701 (2004).
[3] D. J. Watts and S. H. Strogatz, Nature (London) 393, 440

(1998).
[4] M. Barthélemy, Phys. Rep. 499, 1 (2011).
[5] B. Gross, D. Vaknin, M. M. Danziger, and S. Havlin, JPS Conf.

Proc. 16, 011002 (2017).
[6] B. Gross, I. Bonamassa, and S. Havlin, Phys. Rev. Lett. 129,

268301 (2022).

[7] B. M. Waxman, IEEE J. Sel. Areas Commun. 6, 1617 (1988).
[8] L. Daqing, K. Kosmidis, A. Bunde, and S. Havlin, Nat. Phys. 7,

481 (2011).
[9] National Land Information Division, National Spatial Planning

and Regional Policy Bureau, MILT of Japan, National Railway
Data (2012).

[10] M. M. Danziger, L. M. Shekhtman, Y. Berezin, and S. Havlin,
Europhys. Lett. 115, 36002 (2016).

[11] D. Vaknin, M. M. Danziger, and S. Havlin, New J. Phys. 19,
073037 (2017).

034302-4

https://doi.org/10.1103/PhysRevE.66.065102
https://doi.org/10.1103/PhysRevLett.93.098701
https://doi.org/10.1038/30918
https://doi.org/10.1016/j.physrep.2010.11.002
https://doi.org/10.7566/JPSCP.16.011002
https://doi.org/10.1103/PhysRevLett.129.268301
https://doi.org/10.1109/49.12889
https://doi.org/10.1038/nphys1932
https://doi.org/10.1209/0295-5075/115/36002
https://doi.org/10.1088/1367-2630/aa7b09


CRITICAL BEHAVIOR OF CASCADING FAILURES IN … PHYSICAL REVIEW E 109, 034302 (2024)

[12] I. A. Perez, D. V. B. Porath, C. E. L. Rocca, S. V. Buldyrev,
L. A. Braunstein, and S. Havlin, New J. Phys. 24, 043045
(2022).

[13] O. Gotesdyner, B. Gross, D. V. B. Porath, and S. Havlin, J. Phys.
A: Math. Theor. 55, 254003 (2022).

[14] S. Havlin, L. A. Braunstein, S. V. Buldyrev, R. Cohen, T.
Kalisky, S. Sreenivasan, and H. E. Stanley, Physica A 346, 82
(2005).
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