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Spreading of localized attacks on spatial multiplex networks with a community structure
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We study the effect of localized attacks on a multiplex network, where each layer is a network of communities
embedded in space. We assume that nodes are densely connected within a community and sparsely connected
to the nodes in the neighboring communities. To investigate percolation processes in this realistic system we
develop an analytical scheme, applying the finite-element method. We find, both by simulation and theory, that
in many cases there is a critical size of localized damage above which it will spread and the entire system will
collapse. In addition, we show that for a constant number of links, networks with less connectivity between

communities are surprisingly more robust.

DOLI: 10.1103/PhysRevResearch.2.043005

I. INTRODUCTION

In recent years, due to the advances in technology, many
systems have become more and more integrated and interde-
pendent. This interdependence can cause a spread of damages,
and lead to a cascade of failures and even entire system
collapse. Therefore, many studies have been carried out to
analyze cascading failures in interdependent networks [1-11].
Many of these studies have focused on the multiplex network
model, which is an important example of an interdependent
network where the same nodes are linked by different layers
[12—15]. Further, in many real systems such as power grids
and transportation systems, the links are of typical relatively
short length due to the embedding in space [16]. In such
spatial systems, the initial failures or attacks can be localized
to a specific region. Recent studies show that in different
cases of spatial interdependent networks, localized attacks are
significantly more damaging than random attacks [17-20]. In
addition, many real networks have a modular structure [21],
such as biological networks [22,23] and many infrastructure
systems [24,25]. Therefore, recent studies have explored and
compared the robustness of individual and interdependent
modular non-spatial systems [26-29]. Our study combines
for the first time, three ubiquitous features of real complex
systems—interdependence, spatiality and modularity.

Here, we analyze and predict the resilience of spatial
multiplex networks with modular structure under localized
attacks, by developing tools based on percolation theory
[30-33]. Examples of systems that provide motivation for
our model are infrastructure networks [34,35], ecological sys-
tems [36], and financial networks [37]. Specifically, in the
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infrastructure example, each layer describes different infras-
tructure in a country, such as power grids, communications
networks, water supply, etc. The different infrastructures are
dependent on each other, and in addition, each layer has high
connections within the cities and a few long connections be-
tween nearby cities. We focus on localized failures because
of two main reasons. First, a localized damage is a realistic
scenario (due to flood or earthquake), and second, in such
systems, a finite number of local failures concentrated in the
same area might spread the damage throughout the system
and cause significant damage and even to a complete system
collapse.

II. MODEL

Our model is generated as a multiplex system with spatial
and community properties (see Fig. 1). A multiplex network is
a single network with at least two kinds of connectivity links.
We assume here that the two types of links serve for two dif-
ferent functions, such as transportation and communication.
In fact, a multiplex network with two kinds of connectivity
links (for instance) can be regarded as a special case of in-
terdependent networks in which two layers have the same
number of nodes, and every node in one layer has only one
interdependent link with a single node in the other layer. For
a node to remain functional in the multiplex, it must be con-
nected to the giant component in both layers. This reflects the
assumption that, in order for a node in the system to function,
it requires both resources provided by the two layers. The
condition of belonging to a giant component can be replaced
by a condition of belonging to a cluster of sufficiently large
size [38].

For simplicity and without loss of generalization, our mul-
tiplex model is composed of two layers in which the nodes
are placed at sites of a square lattice of size L x L. Each
layer is constructed as m x m Erd6s-Rényi (ER) networks
(communities) of size ¢ x ¢, where { = L/m, which are tiled
and connected to each other as a square lattice (see Fig. 1).
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FIG. 1. A schematic representation of the model. The nodes are
at the lattice sites of a two-dimensional square lattice of size L x L
with L = 15. The system is constructed as m x m Erd6s-Rényi (ER)
networks. Here m = 3, where each ER network is of size { x ¢ with
¢ = 5. The green and blue lines represent the links in the first and
second layer of the multiplex and are constructed independently of
each other. In our simulations we set periodic boundary conditions,
not shown for clarity.

We assume that intralinks connect pairs of nodes in the same
community, while inferlinks connect two nodes belonging to
two distinct neighboring communities. Each node has a degree
kinter Of interlinks and a degree kiny, of intralinks, and the
total degree is set to be ko1 = Kinter + Kintra- We assume that
Kkinter and kin, are independent random variables taken from
two different degree distributions which are characterized by
average degrees (kiner) and (kinga), respectively. In addition,
the heterogeneity of the system is specified by the intercon-
nectivity parameter @ = (Kinter)/ (kiotal) - It should be noted that
the homogeneous case (without communities) has been pre-
viously studied for both single-layer [39,40] and multilayer
[20,41] networks. In that model, all links have a characteristic
length ¢ with no distinction between inter- and intralinks and
therefore representing homogeneous systems. In contrast, the
present model can describe systems with a spatial structure
of communities, where the heterogeneity of the system is
controlled by the o parameter. Thus, this model enables us
to expand the previous model to a more general and realistic
one for systems such as interconnected cities. It is important to
note that the model described in this paper provides qualitative
description of the abovementioned realistic systems and does
not purport to be an accurate description of them.

III. THEORY AND SIMULATION RESULTS

Here we develop a theoretical framework for understand-
ing the cascading process that follows an initial attack, for

a general case of a multiplex network with two layers. The
constraints are that each layer has a spatial structure of com-
munities which are connected in the form of an arbitrary graph
including a lattice.

In the cascading process, at first we remove all nodes that
are not in the giant component (GC) of the first layer. Then,
from the set of the remaining nodes, we remove all the nodes
that are not in the GC of the second layer. We repeat these two
steps until there are no nodes to remove, and we are left with
the mutual giant component (MGC). The existence of a MGC
of size O(N), where N is the number of nodes in the network,
expresses the functionality of the system.

In order to analytically obtain the size of the MGC, we use
a method similar to a finite-element approach [42] in which
we introduce nonlinear equations for each community and
for each intercommunity link, treating the entire system as a
network of communities. We begin with deriving equations
for the GC size of a single layer after an attack (i.e., nodes re-
moval). We assume that the number of links &, ; ; linking any
node v in community { to nodes in community j is statistically
independent from number k, ; ¢, linking node v to any other
community £. These numbers are randomly taken from given
degree distributions P, j(k). We define the generating func-
tions of these distributions as G; j(x) = Y ;o P j(k)x*, and
we define the generating functions of the excess degree distri-
bution [43] as Hy j(x) = 300 BlHDED 1k where (k; ;) are

i,j k=0 (ki) > i,J
the average degrees of distributions P; ; (k).

We define f; ; as the probability that a randomly selected
link, which passes from a node in community i to a node in
community j, does not lead to the GC.

Therefore, 1 — f; ; is the probability that the node we
reach, by the incoming link, survived the attack and has at
least one outgoing link which leads to the GC. When cal-
culating the probability that an outgoing link of the reached
node is not connected to the GC, we distinguish between
two cases. In the case of an outgoing link that goes back to
community i, we use the generating function H;; since one
of the links leading from the reached node to community i is
used by the incoming link. In the complementary case, we use
the generating function G;,. Thus, when defining p; as the
fraction of nodes that survived in community j as a result of
an attack, f; ; fulfill the equations

I —fij= p,-[l —H,,,-<f,-,,»>1"[G,-,m,e)}, (1)
0£i

where the index ¢ goes over the set of neighboring communi-
ties of community j including community j itself.

We define g; as the fraction of nodes in community i which
belong to the GC. Accordingly, g; is the probability that a
randomly selected node in community i survived the attack
and has at least one link which leads to the GC. Hence, g; is
obtained by the following equation:

gi = pi[l -11 Gl-,,(f,-,,)}, )
J

where the index j goes over the set of neighboring communi-
ties of community i including community i itself.
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Next, we obtain the MGC equations for a multiplex with
two layers, A and B. Here, we define f;; for each layer as
the probability that a randomly selected link (that passes from
community { to community j) does not lead to the MGC.
Therefore, 1 — f; ; is the probability that the reached node sur-
vived the attack and has, in both layers, at least one neighbor
that belongs to the MGC. In principle, the degree distributions
of the layers can be different, and hence the functions of the
components f; ;, G; j, and H; ; should be different. From here,
we distinguish the two layers by adding indexes A and B.
Suppose that the survival probability for each community j
after the initial attack is p;, thus l{‘j fulfill the equations

1—m=mﬁ—@ﬂmn@mm}

0£i

<[r-Teton] o
4

where the index ¢ goes over the set of neighboring commu-
nities of community j including community j itself. From
symmetry, the equations for 1 — le] are the same but with
switching between A and B. The MGC of community i, Py,
is the probability that a randomly selected node in community
i survived the initial attack and has in both layers at least one
neighbor that belongs to the MGC. Thus,

%Fﬂun%%ﬂun%@ﬁ @
J J

where the index j goes over the set of neighboring communi-
ties of community i including community i itself. The set of
symmetric Eqgs. (3) for fl{*i and le] can be solved iteratively in
such a way that each iteration represents a stage in the cascade
of failures (see the Appendix, Sec. 1, for a more detailed
discussion).

In the limit of infinitely large ER communities, it is ac-
ceptable to consider the ER degree distributions as Poisson. If
all distributions P; ;(k) are Poisson, then G; ;(x) = H; j(x) =
exp[(k; j)(x — 1)] and all probabilities f; ; for the same com-
munity j but different i satisfy the same equation and hence
they must be equal and we define f; = f; ;. Thus, Eqgs. (1) and
(2) are significantly simplified and we obtain f; = (1 — g;).
Hence, the probability that a node in community i belongs to
the GC fulfills the following equation:

g = pi[1 —e 2], )

When the two layers of multiplex A and B follow Poisson dis-
tributions, and average degrees (k; ;)4 and (k; ;) g, respectively,
Eq. (4) gives

Pooi = pi[1 — e ZitkaPi][1 — = 2tkisP=i] - (6)

which is a generalization of the MGC equation for a single
community of an ER multiplex, given in Eq. (40) of Ref. [3],
to the case of many communities.

We next analyze the robustness of our community multi-
plex model with respect to localized attacks. To this end, we
consider the case where all nodes within a radius r;, (radius
hole), from the center of the multiplex, are removed from the
network. When m is an even number, then the center of the

10 o {Kigtar # 5248 < (Kigig ) =254/
2 & (K ) 2.5 v (ki ) =2.56
g ( ktotal ) =2.58
~r L
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FIG. 2. The critical attack size rj, as a function of « for different
(ko) values. For every (ki) the lines represent the theory of
Eq. (6) and the symbols represent simulation results for finite lattices.
For the simulations we set L = 2100 and ¢ = 100, with an average
over five runs for each data point.

multiplex is at the corner of four neighboring ER communi-
ties, or else it is in the center of one ER. Note that r, translates
into the value of p; by counting the fraction of lattice sites
outside the hole of radius r;, in the damaged communities.

We find for networks with different system parameters, by
simulations and theory, what is the critical radius r; needed
to cause a system collapse. We find the accurate value of 7}
through a binary search, where increasing or decreasing of
the radius attack is determined by the MGC size. At a given
radius attack r,, if the MGC size remains in order of the
system size then we increase r,, and otherwise—we decrease
it. We define a threshold condition for the MGC size, below
which we assume that the MGC is zero. For the numerical
calculations of the theory we set the threshold to be 10~!2, and
for the simulations (after some tests) a fraction of 0.1 of the
system size seems to provide a good threshold condition. Each
community consists of at least 4“2 = 10* nodes, so we can
calculate numerically with good approximation the fraction of
nodes that fail in each community for an attack r,. In addition,
since we study the case of a symmetrical two-dimensional
square lattice, for the theoretical calculations [using Eq. (6)]
we set (ki )4 and (k; ;) 10 be (kiner) /4 for i # j and (Kina)
fori=j.

We find that for a network with structure parameters within
a certain parameter range of L, ¢, and (ky), there are two
regimes that are divided by a critical «, (see Fig. 2). For
o > o, we have a metastable regime, where a finite-size lo-
calized attack larger than r; causes cascading failures, leading
to system collapse. In this regime, first, the critical radius 7},
depends weakly on the interconnectivity parameter «. Second,
r, is independent of the number of communities (see Fig. 5
in the Appendix). Note that the metastable regime located in
the narrow interval of (ki) above k. & 2.4554, where k. is
the critical average degree below which a single ER multiplex
collapses without any initial damage [1]. In marked contrast,
for a < a, the critical attack rj is ~0.5L, i.e., removing the
entire system. Therefore, a different o—for a fixed (kiota1)—
can completely change the system’s resilience to localized
attacks. Remarkably, networks with the same (ki) but larger
interconnectivity ratio @ can be more vulnerable to localized
attacks than networks with small @ where the communities are
not well connected, but are more self-sufficient.
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FIG. 3. Analytical results—Contour of the critical attack size r;,.
Dependence of r on the average degree (ko) and the interconnec-
tivity parameter o, for m = 100. We sample with equal intervals 16
values for (k) and 20 values for «. The color bar on the right
represents the size of rj in ¢ units (in log scale).

In addition, we obtain numerically based on Eq. (6) a phase
diagram of ry, for a large system with m = 100 in Fig. 3. The
stable regime, where the system remains functional after any
finite size of localized attack, is marked in yellow. Also, the
phase diagram is the same for different m values, as shown in
Fig. 5(c) in the Appendix, except for r; that are of the order of
the system size.

In order to understand how the damage (produced by
the localized attack) spreads with time, we first produce the
cascade of failures with p; = 1. This configuration can be
regarded as an initial state of the functional system. After this
cascade stops we produce the localized attack of a given radius
r;.. For example, for the simulations in Fig. 4, we perform the
attack on step time = 19 after the system reaches equilibrium.
After the attack, there is a long latent period during which only
a few nodes fail at every time step, and they are located mostly
in the vicinity of the attack area. Then, the damage quickly
spreads until it reaches the edges of the system. The spreading
process explains why the attack size does not depend on the
system size.

IV. DISCUSSION

It is often attractive to build low-connectivity networks be-
cause they are typically less costly. This low connectivity, (i.e.,
relatively small (k1) in our model) can cause susceptibility
to various local failures for certain systems. Here we have
investigated the stability of realistic interdependent networks,
consisting of interconnected communities embedded in space,
against local failures. We develop a theory for calculating the
magnitude of the critical damage needed to destroy the entire
system for different parameters of connectivity and spatiality.
Our approach is similar to the finite-element method which
is applied here to the network of communities, where each
community is treated as an element, participating in a system
of equations. We find that for the same (ki) (and, hence, the
same cost) the networks with low interconnectivity « are more
robust against localized attacks than the systems in which
the communities are well connected. If « is large, the dam-
age produced by the localized attack spreads over the entire
system. For small o, the damage does not spread. Thus, the
interlinks connecting neighboring communities could serve as

(r)in Cunits
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—d =3v/2--- MGC
L d =5v2
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FIG. 4. The cascading failures near the critical point. Propaga-
tion of a local damage with a radius slightly above the critical size
ry.. (a) The average distance from the center, (r), of the nodes that fail
at every iteration. The inset figure is an illustration of the network.
(b) The continuous lines represent the size of Py ;, for four commu-
nities having different distances d in ¢ units from the center (where
the critical hole was removed), as a function of time. The colors of
the lines correspond to the colors of the painted communities in the
inset figure. The dotted line shows the MGC size over the whole
multiplex (3 ; Py ;). For the simulations we set L = 4500, ¢ = 300,
(kiora1) = 2.5, and a = 0.4. The critical size rj, for this simulation,
which was obtained through a binary search, is r;, = 0.57 in ¢ units.

vehicles of damage propagation rather than for stabilizing the
system. This finding explains why islanding, the strategy that
the electrical engineers employed by dividing the system into
almost isolated self-sustained islands, is an efficient strategy
against cascading failures in the power grid.

In addition, we study the dynamical process of cascading
and find a long latent period during which the number of
failed nodes is very small and they are localized close to the
initial attack. During this period, a relatively small interven-
tion by reinforcing a few nodes can stop the propagation of
the cascade of failures. After the latent period is over, the
damage quickly spreads over the entire system and there is
no economic way to stop it.
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FIG. 5. The dependence of the critical attack size r; on the num-
ber of communities. The number of communities is m x m; therefore
the dependence on m expresses the dependence of r; on the number
of communities. In panels (a) and (b) we show two behaviors of r;, for
a = 0.4 and o = 0.8. For values of (k1) near criticality, ; initially
grows with m and then, from a certain m, reaches a stable value. This
stable value oscillates between two values of r;, which correspond to
even and odd values of m. For large (ki) values, r, grows linearly
with m and is approximately 0.5L. In panel (c) we show the same
contour lines of r; as in Fig. 3 in the main text, with the original case
of m = 100 and the additional case of m = 150. We see that both m
values give identical results except near the border where rj;, ~ 0.5L
(in the last contour line).

APPENDIX

1. The cascading failures for a multiplex with two layers

In this section, we calculate the MGC size by analyzing the
cascading failures along with applying the GC formulas for
each layer separately [Egs. (1) and (2) in the main text]. If we
introduce vectors f with components f; j, p with components
pi, and g with components g;, then Eq. (1) in the main text can
be written in a symbolic vector form:

F=o(. p.
This equation can be solved by the iteration method starting
with f =0, and it will uniquely define vector f(p) as the

function of vector p. Analogously, Eq. (2) in the main text
can be presented in a vector form:

(AD)

- -

§=V(.p). (A2)

50 m =100
T T i >
peoeemgg%aﬂ
<o-a=0.4 X /
W0 o0 =08 o 1
2 I )
S 30 & 4
< 20 —
£ 4 ]
[S = /
§
10 o 1
0 — M ‘
2.45 2.5 2.55 2.6 2.65
{ ktotal )

FIG. 6. The dependence of the critical attack size rj, on the total
degree. Here we show (for m = 100) that r; increases with (kiowl),
when for o = 0.4 the transition is sharper than for « = 0.8. This
result explains why the jump in Fig. 5(a) is larger than that in
Fig. 5(b).

For generality, we assume that in this equation the vectors f
and p are two arbitrary vectors, independent of one another.

Now we obtain equations for the MGC of the multiplex.
Suppose that the survival probability vector after the initial
attack is p(0) and that the vector of survival probabilities after
stage ¢ of the cascade is p(¢). In principle, for the layers of the
multiplex, A and B, the degree distributions can be different,
and hence the functions ® and ¥ and the vectors f and g
should be different. Therefore, we distinguish them by adding
indexes A and B. Using the same logic as in Ref. [1], the
equations of the cascade of failures starting from t = 0 are
as follows:

fa@t) = DaLfa(21), p21)],
8a(2t) = WA fa(21), p(21)],
P2t + 1) = Ua[f1(21), BO)],
a2t + 1) = D[ fp2t + 1), p2t + 1)),
82t + 1) = g fp2t + 1), p2t + 1)),
Pt +2) = Uyl fp2t + 1), HO)],

where g4(¢) and gg(¢) are the fraction of nodes of each com-
munity in the giant component at stage ¢, and p(t) is the
effective fraction of survived nodes representing stage ¢ of the
cascade of failures as a percolation process after a random
attack. Ast — oo the vectors g4(¢) and gg(¢) will converge to
the mutual giant component Ps.

(A3)

2. Analytical results of critical attack size rj as a function
of the system parameters

Figures 5 and 6 present the analytical results of the critical
attack size rj, as a function of the system parameters.
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