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A successruL theory of corporate growth should include both the
external and internal factors that affect the growth of a com-
pany'%, Whereas traditional models emphasize production-
related influences such as investment in physical capital and in
research and development', recent models™” recognize the
equal importance of organizational infrastructure. Unfortu-
nately, no exhaustive empirical account of the growth of compa-
nies exists by which these models can be tested. Here we present a
broad, phenomenological picture of the dependence of growth on
company size, derived from data for all publicly traded US
manufacturing companies between 1975 and 1991. We find
that, for firms with similar sales, the distribution of annual
(logarithmic) growth rates has an exponential form; the spread
in the distribution of rates decreases with increasing sales as a
power law over seven orders of magnitude. A model wherein the
probability of a company’s growth depends on its past as well as
present sales accounts for the former observation. As the latter
observation applies to companies that manufacture products of
all kinds, organizational structures common to all firms might
well be stronger determinants of growth than production-related
factors, which differ for companies producing different goods.

The simplest model for corporate growth was proposed by
Gibrat'. Its basic assumptions are that the rate of company
growth is (1) independent of company size (law of proportionate
effect), and (2) uncorrelated in time. These assumptions can be
formalized by the following random multiplicative process:
S.ia = S,(1 4+ ¢), where S, ,, and S, are the sales of the company
at time ¢ + At and ¢ respectively, and ¢, is an uncorrelated random
number with mean close to zero and standard deviation much
smaller than one. Hence log S, follows a simple random walk so
that firm sizes are log—normally distributed. Also, for sufficiently
large time intervals T >> At, the growth rates S,,;/S, are log—
normally distributed.

Although it is known that Gibrat’s assumptions are rejected
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empirically, many theoretical and empirical analyses still use the
Gibrat model as a benchmark, for lack of a better alternative?-%.
To achieve a more realistic characterization of company
dynamics, we analyse the statistical properties of the growth rates.

We studied all US manufacturing publicly traded companies
within the years 1975-91. The data were taken from the Com-
pustat database and all values for sales have been adjusted to 1987
dollars by the GNP price deflator. (Compustat contains financial
information that firms traded on United States securities
exchanges must file with the US Securities and Exchange Com-
mission.) We define a firm’s annual growth rate as R = S,/S,,
where S, and §, are its sales in two consecutive years.

It is customary to study company growth on logarithmic scales,
so we define r = In(S,/S,) and s, = In S, and calculate the con-
ditional distribution p(r | s,) of growth rates r with a given initial
sales value s,,.

The distribution p(r | s,) of the growth rates from 1990 to 1991
is shown in Fig. la for two different values of initial sales.
Remarkably, both curves display a simple ‘tent-shaped’ form.
The distribution is not gaussian—as expected from the Gibrat
model—but rather is exponential,
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FIG. 1 a, Probability density p(r | s,) of the growth rate r = In(S; /S,) from
year 1990 to 1991 for all publicly traded US manufacturing firms in the
1994 Compustat database with standard industrial classification index of
2000-3999. We examine 1991 because between 1992 and 1994 there
are several companies with zero sales that either have gone out of business
or are ‘new technology’ companies (developing new products). We show the
data for two different bins of initial sales (with sizes increasing by powers of
4): 415 < 5, < 4125 (squares) and 4% < S, < 4'°° (triangles). Within
each sales bin, each firm has a different value of R, so the abscissa value is
obtained by binning these R values. The solid lines are fits to equation (1) (in
the text) using the mean 7 (s,) and standard deviation a(s, ) calculated from
the data. b, Probability density p(r | s,) of the annual growth rate, for three
different bins of initial sales: 4%° < S, < 4°*° (circles), 4*° < S, < 4*2°
(squares) and 4% < S, < 45 (triangles). The data were averaged over
all 16 one-year periods between 1975 and 1991. The solid lines are fits to
equation (1) using the mean r (s,) and standard deviation ¢(s,) calculated
from all data.
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The straight lines shown in Fig. 1a are calculated from the average
growth rate 7(s,) and the standard deviation o(s,) obtained by
fitting the data set to equation (1).

We also find that the data for each of the 16 annual intervals
from the period 1975-91 fit well to equation (1), with only small
variations in the parameters 7(s,) and o(sy). To improve the
statistics, we therefore calculate the new distribution by averaging
all the data from the 16 annual intervals in the database. As shown
in Fig. 1b, the data now scatter much less and the shape is well
described by equation (1). For this reason, we have also included
in the figure data for ‘volatile’ cases, corresponding to sales of only
about 2.6 x 10° dollars.

As is apparent from Fig. 1b, a(s,) decreases with increasing s,.
We find o(s,) is well approximated over more than seven orders of
magnitude—from sales of less than 10* dollars up to sales of more
than 10" dollars—by the law

o(sy) = aexp(—Ps) = aSE” (2)

where a ~ 6.66 and f# = 0.15 + 0.03 (Fig. 2).

We performed a parallel analysis for the number of employees,
and the corresponding standard deviation is shown in Fig. 2. The
data are linear over roughly five orders of magnitude, from firms
with only 10 employees to firms with almost 10° employees. The
slope = 0.16 + 0.03 is the same, within error bars, as that found
for sales.

We find that equations (1) and (2) accurately describe three
additional indicators of company growth; (1) cost of goods sold
(with exponent § = 0.16 £ 0.03), (2) assets (f = 0.17 £ 0.04), and
(3) property, plant and equipment (ff = 0.18 + 0.03).

What is remarkable about equations (1) and (2) is that they
govern the growth rates of a diverse set of firms. They range not
only in their size but also in what they manufacture. The conven-
tional economic theory of the firm is based on production
technology, which varies from product to product. Conventional
theory does not suggest that the processes governing the growth
rate of car companies should be the same as those governing, for
example, pharmaceutical or paper firms. Indeed, our findings are
reminiscent of the concept of universality found in statistical
physics, where different systems can be characterized by the
same fundamental laws, independent of ‘microscopic’ details.

In statistical physics, scaling phenomena of the sort that we have
uncovered in the sales and employee distribution functions are
sometimes represented graphically by plotting a suitably ‘scaled’
dependent variable as a function of a suitably ‘scaled’ independent
variable. If scaling holds, then the data for a wide range of
parameter values are said to ‘collapse’ upon a single curve. To
test the present data for such data collapse, we plot (Fig. 3) the
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FIG. 2 Standard deviation of the one-year growth rates of the sales (circles)
and of the one-year growth rates of the number of employees (triangles) as
a function of the initial values. The solid lines are least-square fits to the
data with slopes f# = 0.15 + 0.03 for the sales and f§ = 0.16 + 0.03 for
the number of employees. We also show error bars of one standard
deviation about each data point. These error bars appear asymmetric as
the ordinate is a log scale.
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FIG. 3 Scaled probability density p... = 2Y/20(s,)p(r | So) as a function of
the scaled growth rate r,.,, = 2Y2[r — F (s,)]/a(s,) of sales (circles). The
values were rescaled using the measured values of 7 (s,) and o (s, ). Also we
show (triangles) the analogous scaled quantities for the number of employ-
ees. All the data collapse upon the universal curve py, = exp(— | Fea | )
(solid line) as predicted by equations (1) and (2).

scaled probability density p,., = v20(s,)p(r | 5,) as a function of
the scaled growth rates of both sales and employees
Fea = V2[r —7(so)]/0(s,). The data collapse upon the single
Curve Py, = €Xp(— | ea | ). Our results for (1) cost of goods
sold, (2) assets, and (3) property, plant and equipment are equally
consistent with such scaling.

The Gibrat model, which yields a log—normal distribution of the
growth rates for sufficiently long time intervals, fails to explain the
observed distribution of annual growth rates (even for intervals as
long as 5 years, we find p(r | s,) does not obey a normal distribu-
tion.) There is, however, a simple dynamic process in which
successive values of S, are correlated that generates the observed
tent-shaped distribution. Suppose each firm has a tendency to
maintain a value S*, which evolves only slowly in time and which
can be interpreted as the minimum point of a ‘U-shaped’ average
cost curve in conventional economic theory. This type of dynamics
is similar to what is known in economics as regression towards the
mean®’?. If the growth process has a constant ‘back-drift’, that is,

k(1+¢) forS, <S

3
1%(1 +¢) forS, >§ 3)

S1+A1/S/ =

where k is a constant larger than one, then the distribution of
growth rates is the tent-shaped distribution equation (1) with a
width proportional to 1/In k (ref. 29).

Our empirical findings of equation (2) are consistent with a
hierarchical model of the internal structure of each firm. In
zeroth-order approximation, suppose that a given company con-
sists of independent units. If the unit’s sales fluctuate with a
standard deviation independent of s,, then equation (2) follows
with f = 1/2. The much smaller empirical value of f that we find
indicates the presence of strong, positive correlations among the
firm’s units. We propose a model relying on a technology of
management (which may be common across firms) as opposed
to a technology of production; this model may lead to some insight
into why the behaviour of apparently diverse firms follows a simple
law.

Consider a tree-like hierarchical organization of a firm'". The
root of the tree (that is, ‘top of the pyramid’) represents the head
of the firm, whose policy is processed to the level beneath, and so
on, until finally the N = z" lowest-level units take action; here z is
the average number of links connecting the levels and n the
average number of levels. The N lowest -level units have sales ¢
and mean (¢), 50 Sy = %, & = N(&).

Suppose that the head of the company suggests a policy
with the intention to change the sales of each lowest-level
unit by an amount A&. If this policy were to be propagated
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through the hierarchy without any modifications, then the
change in sales would be AS = NAZ = S)A&/(&). Accordingly,
r=In[(S, + AS)/S,] = In[1 + A&/(&)], whichis independent of S.
It follows that f = 0.

More realistically, each unit is not only influenced by the policy
of the head but also by other (external and internal) factors. An
example is that different levels have different information.
Managers at each level might deviate from decisions made
higher up in the tree if other information suggests to them that
another action is appropriate. Another reason for a modification
of the policy is organizational failure, due either to poor commu-
nication or disobedience. For these reasons, we assume that each
manager follows his supervisor’s policy with a probability IT, while
the probability (1 — IT) imposes a new independent policy for his
subunits. Straightforward calculation using methods described,
for example, in ref. 30 yields equation (2) for n >> 1, with exponent
B given by the formula

. { —InM/lnz it 0>z

1/2 if <z @
(for small n, equation (4) is still a good approximation—for
example, for n =3 and z =2, the deviation from the value
f =0.20 is only 0.03). Equation (4) is confirmed in the two
limiting cases: when IT =1 (absolute control) f = 0, while for
all IT < 1/z"/?, decisions at the upper levels of management have
no statistical effect on decisions made at lower levels,and § = 1/2.
Moreover, for a given value of f < 1/2 the control level IT will be a
decreasing function of z: IT = z°*. For example, if we choose the
empirical value § = 0.15, then equation (4) predicts the plausible
result 0.9 > IT > 0.7 for a range of z in the interval 2 <z < 10.
Our central results, equations (1) and (2), constitute a test that
any accurate theory of the firm must pass. These equations
support the possibility’® that the scaling laws used to describe
complex systems comprised of many interacting inanimate par-
ticles (as in many physical systems) may be usefully extended to
describe complex systems comprised of many interacting animate
subsystems (as in economics). O
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Melting dynamics of a plasma
crystal
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PrasMas have long been regarded as the most disordered state of
matter; nevertheless, a set of colloidal particles introduced into a
charge-neutral plasma can spontaneously exhibit ordered crys-
talline structures'?—so-called ‘plasma crystals’. Such systems,
which reach equilibrium very rapidly and can be easily tuned
between their ordered and disordered states, are ideally suited for
investigating the processes underlying the solid-to-liquid phase
transition. Here we report the results of experiments on ‘flat’
plasma crystals (with thicknesses of only a few lattice planes)
which suggest that the melting transition occurs through two
fundamental intermediate stages. On melting, the crystal first
enters a state characterized by islands of crystalline order, about
which streams of particles flow. The crystalline regions then
dissolve as the vibrational energy of the system increases, but
this is accompanied by a temporary increase in orientational
order before the system finally enters a disordered, liquid state.
The unexpected ‘vibrational’ phase, characterized by enhanced
orientational order, might arise as a consequence of the mixed
two- and three-dimensional nature of the flat plasma crystals.
Alternatively, it may indicate the existence of a new intermediate
state in melting transitions more generally.

The forces controlling the structure and thermodynamics of
plasma crystals are (1) Coulomb forces between the embedded
particles and (2) neutral gas friction, which ‘cools’ the particles
down to brownian motion. We consider Coulomb forces first. By
colliding with electrons and ions in a plasma, micrometre-sized
particles may obtain (negative) equilibrium charges, Q, of several
thousand elementary charges, e (refs 1, 3). Equilibrium is reached
in a fraction of a second. The plasma reorganizes itself locally in
the electric field around the particle to neutralize its charge. The
appropriate ‘screening distance’ is called the Debye length, 4; it
depends on the plasma temperature, 7, and the plasma density, n,
as Ap = (kT /4nne?)"*. Coulomb interaction between neighbour-
ing particles (and therefore crystallization) can only occur if their
separation is < Ap. (This system may be considered to be
comparable to a heavy atom whose positive core is neutralized
by its electron cloud. The effective ‘atom radius’ is A,.) The second
controlling force is neutral gas friction, which can provide the low
particle kinetic energies required for crystallization. Experimental
conditions for crystallization thus require a partially ionized
plasma with a low- (room-) temperature neutral gas component.
Such conditions can be produced easily in low-power radio-
frequency discharges. For the experiment described here, we
used krypton at room temperature and pressures between 0.1
and 0.5 mbar, a radio-frequency power of 0.8-2W to give an
ionization fraction from 1077 to 1075, and monodispersive mela-
mine/formaldehyde spheres of 6.9 pum diameter (see ref. 1 for
details).

The parameters determining the thermodynamics of the plasma
crystal system are (1) the Coulomb coupling parameter I'. In the
case of a screened Debye potential, I' = (Q*/AkT) exp(—4/2p)-
This is the ratio of the Coulomb energy between two neighbouring
particles (separated by a distance A4) to their kinetic energy k7. (2)
The ratio k = 4/Ap of the lattice distance, 4, to the Debye
screening distance. Theoretical considerations*® suggest that
Coulomb crystallization may occur if I' >T'; =172 and k < 1.
(I is the critical value for crystallization obtained in Monte Carlo
simulations of one-component-plasmas.) A decrease of I', or an
increase of «k, leads to ‘melting’ of the crystalline structure. This
can be initiated and controlled easily in radio-frequency discharge
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