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Structural properties of spatially embedded networks
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Abstract – We study the effects of spatial constraints on the structural properties of networks
embedded in one- or two-dimensional space. When nodes are embedded in space, they have a
well-defined Euclidean distance r between any pair. We assume that nodes at distance r have
a link with probability p(r)∼ r−δ. We study the mean topological distance l and the clustering
coefficient C of these networks and find that they both exhibit phase transitions for some critical
value of the control parameter δ depending on the dimensionality d of the embedding space. We
have identified three regimes. When δ < d, the networks are not affected at all by the spatial
constraints. They are “small-worlds” l∼ log N with zero clustering at the thermodynamic limit.
In the intermediate regime d < δ < 2d, the networks are affected by the space and the distance
increases and becomes a power of log N , and have non-zero clustering. When δ > 2d the networks
are “large” worlds l∼N1/d with high clustering. Our results indicate that spatial constrains have
a significant impact on the network properties, a fact that should be taken into account when
modeling complex networks.

Copyright c© EPLA, 2008

Introduction. – The interdisciplinary field of complex
networks has recently received considerable atten-
tion [1–11]. A network is a set of nodes, representing the
elementary units of a system. These nodes are connected
by edges (bonds) when an interaction between the nodes
is present. In a social network, for example, the nodes
denote individuals. An edge connects two nodes if there is
a relationship between the two individuals. Networks are
particularly interesting as theoretical models of complex
systems since they provide a straightforward way to
describe all sorts of interactions between the elementary
units of a system.
Although there are infinitely many types of networks

the attention of scientific community is actually focused
in four types: regular networks, random graphs, “small-
world” networks and scale-free networks.
Regular networks consist of nodes that are identical to

each other. The number of edges k emanating from each
node (the “degree” of the node) is a constant. Some of the
most common constructions used in computational and
theoretical physics, such as the square lattice, the Bethe
lattice or the complete graph (a graph where each node
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is connected to every other node) belong to this type of
networks.
Random graphs were introduced and studied by Erdös

and Rényi [12]. In Erdös-Rényi networks the distribution
of the degrees of the nodes is Poissonian, and this fact
facilitates the study of several important properties and
allows analytical results. These networks have been exten-
sively studied and used as some of the first models of social
networks.
“Small-world” networks were initially proposed by

Watts and Strogatz as an improved model of social
networks [6,7]. These networks show simultaneously the
important feature of “clustering” (i.e. nodes that have
common neighbors have a higher probability of being
themselves connected) and the small-world phenom-
enon meaning that their topological diameter is slowly
(logarithmically) increasing with increased system size.
In scale-free networks [1–3] finally, the degree distrib-

ution follows a power law P (k)∼ k−γ , with γ typically
between two and three. Scale-free networks have the ultra-
small world property as the diameter of the network scales
only logarithmically with the logarithm of the number of
nodes [9].
In all the above cases, the spatial arrangement of

nodes is considered of no importance. It is assumed that
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spatial constraints can be neglected such that mean-field
approaches become applicable. Many real networks are,
however, embedded in 2D or 3D space. Examples are the
Internet, airline networks, social networks, transportation
and wireless communication networks [3,13] etc. If these
spatial constraints are important, mean-field theory is
no longer valid [14], and new approaches have to be
developed instead. Spatially constrained networks are a
promising type of complex networks whose importance
has been only recently realized [15–18]. Up to now, most
efforts deal with the simplest case, i.e. how to embed
in the normal Euclidean space complex networks with
a given degree distribution, while allowing only closest
neighbor connections. If one allows additional long-range
connections then the resulting networks are more difficult
to study but much closer to the real complex networks.
Here we study spatially constrained networks embedded

in one- and two-dimensional space. We are interested
in the simple case of networks that have a Poissonian
degree distribution and where nodes are connected to each
other with a probability p(r)∼ r−δ, i.e. depending on the
Euclidean distance r between the nodes. The choice of a
power law for the distance distribution is supported from
recent findings on the topology of real complex networks,
such as the Internet [19], human travels [20] and in social
networks [21].
We propose a simple algorithm to generate such

networks and we study properties such as the topological
distance l between nodes and the clustering coefficient
C. The exponent δ has the role of a control parameter
of the properties of the embedded networks and we find
that there are three regimes of interest with qualitatively
different behavior. Networks with δ < d, where d is the
dimensionality of the embedding space, behave more or
less like random graphs, networks with δ > 2d behave
much like regular lattices while networks with δ between
these d and 2d show intermediate power law behavior
with critical exponents that depend on δ.
Conceptually, our model is related to the “small-world”

networks [6,7,22] and to long-range percolation [23–25].
In both the above cases, an underlying lattice structure
is assumed and is “perturbed” by the addition of a frac-
tion of long-range connections. Thus, there is a compe-
tition between short- and long-range interactions which
determines the properties of the network. In our model,
no such underlying structure exists. A perfectly ordered
lattice is recovered only in the limit of infinite δ. There is,
however, still a “hidden” competition between short and
long range, but now the magnitude of both “short” and
“long” is controlled by the exponent δ and the system size.

Methods. – To construct the networks, we first
arrange the nodes in a one-dimensional (d= 1) linear
chain or in a two-dimensional (d= 2) regular square
lattice. Thus, between any pair of nodes there is a
well-defined Euclidean distance. Next, we initially choose
a node i randomly and assume that it is connected to kt

other nodes. For each of these nodes, we first choose its
distance r from node i with probability P (r) = crd−1r−δ,
where c is determined from the normalization condition∫ L
1
P (r)dr= 1, with L=N1/d. Then we pick one of the

Nr sites that are at distance r within the underlying
lattice. We repeat this process for all nodes i in the
underlying lattice and then remove multiple connections.
The nodes of the final network we obtain this way do
not have a fixed degree. Their mean degree k̄ depends on
both kt and δ. In other words, for obtaining a certain k̄
value for fixed δ, we have to choose an appropriate value
for kt. When the networks are constructed we measure
their actual degree probability distribution p(k) to verify
that all networks have at least approximately the same
mean degree k̄ and the actual distance distribution p(r)
i.e. the fraction of connected nodes that are at distance
r from each other, which is affected by the process of
the removal of duplicate edges. In what follows we have
succeeded in obtaining k̄≈ 4 (to be precise 3.3< k̄� 4)
using kt = 2 when δ� 2.25, kt = 3 when 2.25< δ� 3
and kt = 5 for δ= 4 for the one-dimensional case. For
the two-dimensional case kt = 2 produced networks
with 3.6< k̄� 4 for all δ � 4.5. Thus, no particular
“fine-tuning” was necessary.

Quantities of interest. – We are interested in the
mean topological distance l between the nodes of the
network and the mean clustering coefficient C. The topo-
logical distance between two nodes a and b is the minimum
number of links that a walker has to cross in order to arrive
from a to b. The (local) clustering coefficient of a node i
in a network is defined as

C(ki) =
ti

[ki(ki− 1)/2] , (1)

where ti is the number of triangles (loops of length 3)
attached to this node divided by the maximum possible
number of such loops. For calculating the mean topological
distance l and the mean clustering coefficient C we average
over all nodes in the network (typically 105) and over all
network (typically 102) realizations.

Results. – First, we show that the generated networks
have the desired degree and distance distributions.
Figure 1 shows the degree distribution P (k) and
the distance distribution P (r) for the generated one-
dimensional (fig. 1a, c) and two dimensional (fig. 1b, d)
networks, for three characteristic δ values each, δ= 0.5,
1.5, 2.5 (d= 1) and δ= 2, 3.5, 5.5 (d= 2). Figures 1a, b
confirm that the networks have a narrow degree distrib-
ution around k̄≈ 4. Figures 1c, d confirm that P (r) has
the desired distance distribution P (r)∼ r−(δ−d+1) for
both d= 1 and d= 2.
Next, we study the mean topological distance l as a

function of the network size N . In the limiting case δ→ 0
the spatial constraints are not significant and we expect
that the networks will belong to the universality class of
Erdös-Rényi random graphs, where l scales as l∼ log N .
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Fig. 1: (a) Probability P (k) that a node has degree k for
d= 1 networks with N = 105, k̄≈ 4 and for δ= 0.5, 1.5 and
2.5. (b) Probability P (k) for d= 2 networks with N = 5× 104,
k̄≈ 4 and for δ= 2, 3.5, 5.5. (c) Probability P (r) that a node
has a connection at distance r for the same d= 1 networks
as in (a). The points are logarithmically binned simulation
data. (d) Probability P (r) that a node has a connection at
distance r for the same d= 2 networks as in (b). The points
are logarithmically binned simulation data. In (c,d) the straight
lines have slopes equal to −(δ− d+1).

In the opposite case δ→∞, the spatial constraints will
result in an ordered lattice-like structure that belongs
to the universality class of regular lattices, where the
mean topological distance l scales as N1/d (d is the
dimensionality of the embedding space). We are interested
in how the dependence of the topological distance l on N
changes when δ changes from zero to infinity.
Our results (figs. 2 and 3) indicate that in both d= 1

and d= 2, there are three regimes separated by δ= d and
δ= 2d, where the behavior of the networks is qualitatively
different. In the first regime 0� δ < d (see fig. 2a for d= 1
and fig. 2b for d= 2), l scales as log N independent of
δ. In the third regime, δ > 2d (see fig. 2c for d= 1 and
fig. 2d for d= 2) the result suggests that l asymptotically
scales as N1/d as for regular lattices. This dependence is
well observed in d= 1 (fig. 2c) for δ= 4 and in d= 2 for
δ= 5.5. For δ closer to 2d, this scaling is only recovered
for sufficiently large networks. For δ= 2d, l scales as Nγ ,
with γ ≈ 0.35 for d= 1 and γ ≈ 0.3 for d= 2 (see the lowest
curves in figs. 2c and d, respectively).
Figure 3a, b shows the mean topological distance l as a

function of N in the intermediate regime d< δ < 2d. The
plots suggest that for both d= 1 and d= 2, l scales as
l∼ (ln(N))α. Accordingly, we can summarize the depen-
dence of l on N as follows:

l∼



log(N), δ� d,
(log(N))α, d� δ < 2d,
N1/d, δ > 2d.

(2)

When δ= 2d the numerical results are quite well described
by a power law Nγ where γ ≈ 0.35 for d= 1 and γ ≈ 0.3 for
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Fig. 2: (a) Mean topological distance l as a function of the
networks size N for d= 1 networks with k̄≈ 4 and for δ= 0, 0.5
and 1, i.e. in Regime 1 (LinearLog plot). (b) Mean topologi-
cal distance l as a function of the networks size N for d= 2
networks with k̄≈ 4 and for δ= 0, 1 and 2, i.e. in Regime 1
(LinearLog plot). The straight line is guide to the eye.
(c) Mean topological distance l as a function of the networks
size N for d= 1 networks with k̄≈ 4 and for δ= 2, 2.50 and 4,
i.e. in Regime 3 (LogLog plot). (d) Mean topological distance
l as a function of the networks size N for d= 2 networks with
k̄≈ 4 and for δ= 4, 5, 5.5, i.e. in Regime 3 (LogLog plot). The
straight line has slope 0.5.

d= 2. It is, however, probable that there are logarithmic
corrections to this scaling form. The variation of the
exponent α with δ is shown in fig. 3c for d= 1 and fig. 3d
for d= 2. The results suggest that approximately

α=



1/δ

2− δ , d= 1,
4/δ

4− δ , d= 2.
(3)

Equation (3) provides a good fit to the results in figs. 3c, d,
and although is not a rigorous analytic result it may be
useful for practical purposes1. Note that eq. (3) ensures
a smooth transition between the first and second regime.
To match with the power law behavior when δ > 2d, α
diverges when approaching δ= 2d from below. In d= 2,
also a weaker singularity could fit the data.
We like to note that these transition points arise

naturally in the scaling of the mean distance r̄ and the
maximum distance rmax with the system size L. By

definition r̄=
∫ L
1
rp(r)dr, while rmax is obtained from the

condition Ld
∫ L
rmax

p(r)dr≈ 1. It is easy to verify that

r̄∼
{
L, δ� d,
Ld−δ+1+ c1, δ > d,

(4)

1Of course, in eq. (2) in the range d� δ < 2d a more complex
scaling form cannot be excluded.
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Fig. 3: (a) Mean topological distance l as a function of
the networks size N for d= 1 networks with k̄≈ 4 and for
δ= 1.2, 1.5 and 1.8 (bottom to top), i.e. in Regime 2 (LinearLog
plot). The lines are fits to the simulation data of the scaling
assumption (eq. (2)). (b) Mean topological distance l as a
function of the networks size N for d= 2 networks, k̄≈ 4 and
for δ= 2.5, 3, 3.5 (bottom to top), i.e. in Regime 2 (LinearLog
plot). Points are simulation data and lines are fits of eq. (2).
(c) Exponent α as a function of δ for d= 1 networks in the
second regime (1< δ < 2). (d) Exponent α as a function of δ for
d= 2 networks in the second regime (2< δ < 4). Points are best
fit estimates to the simulation data. Lines are plots of eq. (3).

where c1 does not depend on N and

rmax ∼
{
L, 0< δ� 2d,
L

d
δ−d , δ� 2d.

(5)

Accordingly, the relative mean distance r̄/L is finite for
δ� d and 0 for δ > d in the limit of large L. Similarly, the
relative maximum distance rmax/L is finite for δ� 2d and
0 for δ > 2d for L going to infinity. The above relations can
qualitatively elucidate the existence of different regimes.
For simplicity consider the case d= 1 and assume one
attempts to go from the one end of the “chain” to the
other. When the mean length r̄ of each link is comparable
to the lattice size L, then he can succeed with only one
step on average. The lattice is a small world (regime 1).
When the the mean length r̄ is less than L but rmax is
of the order of L, then the walker will have to do more
steps but he will eventually arrive at a site that has a
long edge rmax that will allow him to arrive at the end
of the lattice. The lattice is not a small world as in the
first case but also not a regular lattice since there are
links that decrease the topological distance considerably
(regime 2). When both r̄ and rmax are less than L, there
are no shortcuts. Renormalizing the graph will result in a
regular linear chain (regime 3).
Finally, we study how the clustering coefficient C

depends on δ and N (fig. 4). We are particularly interested
in the behavior at the transition points δ= d and δ= 2d.
We expect that for δ→ 0, C ∼ 1/N similar to the case of
Erdös -Rényi random graphs. When δ→∞ we expect the
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Fig. 4: (a) Clustering coefficient C as a function of 1/N for
δ= 0, 0.5, 1, 1.2, 15, 1.8, 2.5 and d= 1. (b) Clustering coefficient
C as a function of 1/N for δ= 1, 1.5, 2, 2.5, 3, 3.5, 5 and d= 2.
Straight lines are best fits with slope 1.

(high) clustering of the lattices. We find that the critical
point at δ= d separates a phase of zero clustering when
δ < d from a phase of finite clustering when δ > d. The
second transition point at δ= 2d does not influence C
remarkably. Figures 4a, b show C as a function of 1/N for
d= 1 and d= 2, respectively. The clustering coefficient C
decreases as 1/N for δ < d in both one and two dimensions,
while for δ > d the slope of the curves in the double
logarithmic plot becomes zero, confirming the existence of
a regime with non-zero clustering. It is remarkable that as
soon as δ becomes larger than d, the spatial effects become
very pronounced. The topology not only affects the mean
topological distance but also increases simultaneously the
clustering coefficient.

Conclusions. – We have examined the mean topolog-
ical distance l and the clustering coefficient C of networks
that are embedded in one- or two-dimensional space. Both
exhibit phase transitions for some critical value of the
control parameter δ. We have identified three regimes.
When δ < d, where d is the dimensionality of the embed-
ding space, the networks are “small-worlds” with zero
clustering at the thermodynamic limit. In the interme-
diate regime d< δ < 2d, the topology changes. The topo-
logical distance becomes a power of the logarithm of the
system size and the networks have non-zero clustering.
When δ > 2d the networks do not have the small-world
property and have high clustering. Our results indicate
that spatial constraints have an important influence on
the network properties and this fact should be taken into
account when modeling real complex networks. A natural
extension of this work will be to consider fractal or multi-
fractal substrates instead of regular lattices [13,26] and
study their influense on the topological properties of the
embeded networks.

48005-p4



Structural properties of spatially embedded networks

∗ ∗ ∗

This work was supported by a European research NEST
Project No. DYSONET 012911.

REFERENCES

[1] Barabási A.-L. and Albert R., Science, 286 (1999)
509.

[2] Albert R., Jeong H. and Barabási A. L., Nature
(London), 401 (1999) 130.

[3] Mendes J. F. F., Dorogovtsev S. N. and Ioffe A. F.,
Evolution of Networks: From Biological Nets to the Inter-
net and WWW (Oxford University Press, Oxford) 2003.

[4] Pastor-Sattoras R. and Vespignani A., Evolution
and Structure of the Internet: A Statistical Physics
Approach (Cambridge University Press, Cambridge) 2004.

[5] Newman M. E. J., Watts D. J. and Strogatz S. H.,
Proc. Natl. Acad. Sci. U.S.A., 99 (2002) 2566.

[6] Watts D. J. and Strogatz S. H., Nature (London), 393
(1998) 440.

[7] Watts D. J., Small Worlds (Princeton University Press,
Princeton, NJ) 1999.

[8] Newman M. E. J., SIAM Rev., 45 (2003) 167.
[9] Cohen R., Havlin S. and ben-Avraham D., Handbook
of Graphs and Networks, edited by Bornholdt S. and
Schuster H. G. (Wiley-VCH) 2002, Chapt. 4.

[10] Cohen R. and Havlin S., Phys. Rev. Lett., 90 (2003)
058701.

[11] Gallos L. K. et al., Phys. Rev. Lett., 94 (2005) 188701.
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