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Abstract. We study the optimal distance £,p¢ in random networks in the presence
of disorder implemented by assigning random weights to the links. The optimal dis-
tance between two nodes is the length of the path for which the sum of weights along
the path (“cost”) is a minimum. We study the case of strong disorder for which the
distribution of weights is so broad that its sum along any path is dominated by the
largest link weight in the path. We find that in random graphs, £op¢ scales as IV Yy 3,
where N is the number of nodes in the network. Thus, £opt increases dramatically
compared to the known small world result for the minimum distance ¢, which scales
as log N. We also find the functional form fro the probability distribution P (lopt)
of optimal paths. In addition we show how the problem of strong disorder on a
random network can be mapped onto a percolation problem on the Cayley tree and
using this mapping, obtain the probability distribution of the maximal weight on
the optimal path.

Introduction

Much attention has been focused on the topic of complex networks character-
izing many biological, social, and communication systems [1-3]. The networks
can be visualized by nodes representing individuals, organizations, or comput-
ers and by links between them representing their interactions. The classical
model for random networks is the Erdds-Rényi model where two nodes are
chosen randomly from the total N nodes in the system and are connected
by a link [4]. An important quantity characterizing networks is the minimum
distance ¢ between two nodes in the network. For the Erdds-Rényi network, ¢
scales as log N, consistent with the “six degrees of separation” concept (e.g.,
if N =108, ¢~ 6).

Here we study a more realistic problem in which all links are not assumed
to be equivalent. Hence we assign to each link a weight or “cost.” For example,
the cost could be the time required to transit the link, e.g., there are often
many traffic routes from point A to point B with a set of delay times 7;
associated with each link along the path. The fastest (optimal) path is the
one for which ), 7; is a minimum, and often the optimal path has more links
than the shortest path.
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If the distribution of weights is such that all the links have the same
weight, the average length of the optimal path between any two nodes is the
minimal length £min. In that case it is well known that i, ~ log N [5] (or, for
some scale free networks £min ~ loglog N [6]). If the distribution is narrow,
the average length of the optimal path £,p¢, in general, is greater than £, but
scales the same as £y, [7,8]. If the random distribution is broad, in the limit of
infinite broadness, the disorder is called “strong” and only the largest weight
in the path dominates the sum. The strong disorder limit is implemented by
assigning to each link a potential barrier €; so that 7; is the waiting time
to cross this barrier. Thus 7; = ef¢, and the optimal path corresponds to
the minimum (3", 7;) over all possible paths. When 3 = 1/kT — oo, only
the largest 7; dominates the sum. Thus T — 0 (very low temperatures)
corresponds to the strong disorder limit.

We focus here on the case of strong disorder. This is believed to be the
case for many computer and traffic networks, since the slowest link in commu-
nication networks determines the connection speed. We study this problem
both theoretically and numerically and find that for random graphs £op¢, the
average length of the optimal path, scales as N1/3.

Theoretical arguments

To obtain the optimal path in the strong disorder limit, we present the fol-
lowing theoretical argument. It has been shown [9,10] that the optimal path
for 8 — oo between two nodes A and B on the network can be obtained by
the following algorithm:

1. Sort the edges by descending weight.

2. If the removal of the highest weight edge will not disconnect A from B —
remove it.

3. Go back to step 2 until all edges have been processed.

Since the edge weights are random, so is the ordering. Therefore, in fact,
one needs not even select edge weights to begin with. This “bombing” algo-
rithm can be replaced by simply removing randomly chosen edges one at a
time, where an edge is not removed if its removal will cause the connectivity
between A and B to be lost. The final path left is the optimal path between
A and B in the limit § — co.

Since randomly removing links is a percolation process, the optimal path
must be on the percolation backbone connecting A and B. Since the network
is not embedded in space but has an infinite dimensionality, we expect from
percolation theory that at criticality loops are not relevant and the random
graph can be approximated by a Cayley tree with a Poisson degree distri-
bution. Thus, the shortest path must be the same as the optimal path. It is
also known from percolation theory that at criticality the mass S of the in-
cipient infinite cluster scales as £2, [11]. Since the spanning cluster S scales

min
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at criticality as N2/3 [12], it follows that
emin ~ Eopt ~ NVOPt; (1)

where v,y = 1/3[13].

To test Eq. (1), we apply two numerical approaches. The first approach
is to find the optimal path (which minimizes the sum of weights) using the
ultrametric approach described in Ref. [9]. The second approach is based on
the “bombing” algorithm of Ref. [9].
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Fig. 1. {opt as a function of N'/3 for the optimal path length in strong disor-
der using the two methods discussed in the text:(i) the results obtained using the
“bombing” approach (o) and (ii) the results obtained using the ultrametric ap-
proach (x).The dashed line is the linear fitting of the results showing the linear
relation fopt = 3.27N'/3 — 7.11. This result supports the theoretical value 1/3.

Numerical analysis

Next we describe in detail the two numerical methods for computing £op¢
between any two nodes in strong disorder. We can assume that the energy
spectra ¢; is discrete. We can make 3 so large that, even for the closest values
of energy spectra, the waiting times 7; = exp[fe;] differ by at least a factor
of 2. In this limit, the sum is dominated by the maximum value exp[Bémax]-
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When all the links on the paths have different weights, the optimal path is
the one that has the smallest maximal link weight between all the paths. In
general, as a consequence of the existence of loops, there are links in common
between different paths. Such a link might provide the maximum ¢; of both
paths. In this case we compare the second highest weight and take the path
with the lower value and so forth until the optimal path is determined. This
procedure is equivalent to comparing integers written in binary codes and
hence indeed minimizes Y 7; for f — oc.

First, we describe the ultrametric algorithm [10]. We assign weights to all
the links in the graph where the order of magnitude is taken from a uniform
distribution. This is accomplished by taking a random, uniformly distributed,
variable of the logarithm of the weight. In the limit of strong disorder the
sum of the weights is dominated by the largest value along the path. Next,
we start from one node (the origin) and visit all the other nodes connected
to the origin using the Dijkstra algorithm [14]. If a node at distance ¢ (from
the origin) is being visited for the first time, this node will be assigned a list
So of weights 795, 1 = 1-- - £p of the links by which we reach that node sorted
in descending order,

So = {701, 702,703, ---Tolo } » (2)

with 79; > 7041 for all j. If we reach a node for a second time by another
path of length ¢;, we define for this path a new list Sy,

St ={m1, 712,713, -- - T11 }» (3)

and compare it with a Sy previously defined for this node.

Different sequences can have weights in common because some paths have
links in common, so it is not enough to identify the sequence by its maximum
weight; in this case it must also be compared with the second maximum, the
third maximum, etc. We define S, < S, if there exists a value m, 1 <m <
min(4,,¢,) such that

Tpj = Tqj for 1<j<m and

Tpj < Tgj for Jj=m, (4)

orif £, > £, and 1p; = 745 for all j < £,,.

If 51 < Sy, we replace Sy by S;. The procedure continues until all paths
have been explored and compared. At this point, Sy = Sopt, where Sopy is
the sequence of weights for the optimal path of length fop¢. In reality it is
highly inefficient to compare all possible paths. This is why we use the Dijk-
stra algorithm. The Dijkstra algorithm explores only a limited set of paths,
guaranteeing that the optimal path belongs to this set. The algorithm is im-
plemented as follows. At the beginning we assign to every node i except one
that we choose as our “origin”, a value S; = {oo}. The origin is assigned a
value Sy = {0}. The search for the optimal path follows a procedure akin to
“burning” where the “fire” starts from our chosen origin. In the first step, we
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burn all the neighbors of the origin and replace the values assigned to them
by the weight of the link that connects them to the origin. For example, if
node i is a neighbor of the origin connected to it through a link which carries
weight 10, then S; = {10} after the first step. At this point all the neighbors
of the origin form what we call the “burning set” and the origin is deemed
“extinguished”. Now the algorithm proceeds as follows. That member of the
burning set, which has the lowest value of S; assigned to it, is deemed extin-
guished, and the same burning procedure starts with the node ¢ as the origin.
The only difference is that we burn a node j if and only if its weight sequence
S; is larger than S; | 735, where 7;; is the weight of the link connecting nodes
i and j and |J denotes conjunction. If node j is already burning, we do not
include it into the burning set again, but just replace its S; with S; |J ;.
This procedure guarantees that a node, once extinguished, can never again
become part of the “burning set”. Moreover the weight sequence S; for an
extinguished node yields weight of the optimal path connecting it with the
origin. Once Dijkstra algorithm is completed, we have a minimal spanning
tree[15] constructed on our graph. Dijkstra algorithm in the strong disorder
limit is also equivalent to that of invasion percolation [16,17].
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Fig. 2. Scaled curve for the probability distribution P(£spt) of optimal path lengths
for network sizes N = 1024, 2048, 4096, 8192, 32768, 65536. The gray curve repre-
sents Maxwellian fit given by Eq. (5).
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Using this method, we obtain systems of sizes up to 4000 nodes, typically
10° realizations of disorder. We compute £, by averaging the length of the
optimal path for all the nodes of the configuration and over all realizations.

An alternative method of obtaining the optimal path in strong disorder
is called the “bombing” algorithm [9]. We first choose a pair of nodes on the
graph and begin removing links randomly, making sure that the connectiv-
ity between the two chosen nodes is not destroyed as each link is removed.
The last path remaining is equivalent to the optimal path obtained by the
ultrametric algorithm.

The bombing algorithm is slow, as one must test the connectivity after
removal of each link. To improve the speed, we first find the minimal path in
the network and then select links in random order. We remove the selected
link from the graph. If the removed link belongs to the minimal path, we check
if the connectivity between the two nodes is still present and recompute the
new minimal path. If the connectivity between the two nodes is destroyed,
we restore the link.

The advantage of this procedure is that one has to test for connectivity
only if the selected link appears to belong to the minimal path. Since checking
the connectivity is the most time consuming part in the original “bombing”
algorithm, we could reach systems of sizes up to 2'6 nodes with 10° realiza-
tions of weight disorder. Fig. 1 demonstrate that both algorithms yield very
similar results, supporting the theoretical result (opt) ~ N 1/3,

In Fig. 1, using the theoretical result vops = 1/3 we show numerical values
of (£opt) averaged over 10° realizations of disorder as a function of N*/3. The
linear behavior supports the theoretical value vop, = 1/3.

We also study the probability distribution P(lop) of optimal path lengths
on the network. The scaled curve for P(lop) for different network sizes is
shown in Fig. 2 on a log-log plot. We find that there are two regimes in this
distribution, the first one being a power law P(lopt) ~ (lopt)® which is evident
from the figure, with a = 2. The second regime is a stretched exponential

2]
P(lopy) ~ e “'opt where C is a constant and 6 is around 2. This leads us
to the expectation that the distribution may have a Maxwellian functional
form:

442, e lort /1o
TV @

Where 1, = \/T(lopt)/2 is the most probable value of £op¢. The solid line in
the figure is the plot of this function and as seen it agrees with our numerical
results.

Finally, we repeated our simulations for the case in which disorder weights
are associated with the nodes of the graph, and obtained the same scaling
laws as for the disordered links case.

It should be pointed out that the above results concerning £, practically
do not depend on the average degree (k) of the random graph for large

P(lopt) =
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(k) >> 2, and are the same even for the complete graph with k = N — 1.
However, as we will see in the next section, the distribution of maximal weight
Tmax drastically depends on (k).

Probability distribution of the maximal weight on the
optimal path

Now, we address another aspect of the problem, which is the probability
distribution of the maximal weight 7,5 Or equivalently the maximal random
number €, along the optimal path in a strongly disordered random network.
As we mentioned earlier, the problem of the optimal path on a random graph
in the strong disorder limit can be mapped onto a percolation problem on a
Cayley tree with a degree distribution identical to the random graph and with
a fraction p of its edges conducting. In order to further develop this analogy,
we will show that the distribution of the maximal random number €, along
the optimal path can be expressed in terms of the order parameter Py, (p) in
the percolation problem on the Cayley tree, where Py, (p) is the probability
that randomly chosen site on the Cayley tree belongs to the infinite cluster.
The motivation for the mapping on the Cayley tree comes from the following.
Suppose A and B are two nodes in the random graph. Now, if we start our
search for the optimal path between nodes A and B beginning at node A,
then in the limit of the graph being of infinite size, the probability that we
will visit a previously visited node after a finite number of steps tends to zero.
Hence, we can assume that our search is equivalent to the search on a Cayley
tree. If the original graph has a degree distribution py, the probability that
we reach a node with a degree k by following a randomly chosen link on the
graph, is equal to kpy/(k), where (k) is the average degree. This is because
the probability of reaching a given node by following a randomly chosen link
is proportional to the number of links or the degree k of that node. Also, if
we arrive at a node with degree k, the total number of outgoing branches is
k — 1 . Therefore, from the point of view of the Cayley tree , the probability
to arrive at a node with £ — 1 outgoing branches by following a randomly
chosen link is kpy,/ (k).

In the asymptotic limit, where the optimal path between the two points
is very long, the probability distribution for the maximal weight link can
be obtained from the following analysis. Let us assume that the probability
of not reaching n generations starting from a given node of the Cayley tree
whose edges conduct with a probability p, is @,,. Suppose we are at a node
whose outgoing degree is 2. Then the probability that starting from this node,
we will not reach n generations of its descendants is the sum of three terms:

1. The probability that both the outgoing nodes are not conducting : (1—p)?
2. The probability that both outgoing edges conduct, but the nodes reached
by following them, do not have n — 1 generations of descendants : p>Q?2 _,
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3. The probability that one of the two outgoing edges conduct but the node
reached by following the conducting edge does not have n — 1 generations
of descendants : 2(1 — p)pQn—1

Therefore, in this case[20]

Qn(p) = 1 =p)” +1°Qa_1 +2(1 = P)PQn—1 (6)
which on simplification becomes
Qn(p) = (1 =p) +pQn-1)° (7)

Following this argument for the case where a node has m outgoing edges,
the probability that starting from this node, we can not reach n generations,
is

Qn(p) = (L= p) + pQn-1)™ (8)

Now in the case of a Cayley tree with a variable degree such as ours, we
also have to incorporate a factor which accounts for the probability that the
node under consideration has a given number of outgoing edges. Thus for a
node on the Cayley tree, the probability that it does not have descendants
in generation n can be obtained by applying a recursion relation

Qup) =Y pek((1 = p) +pQi-1)* "/ (k) (9)
k=1

for | = 1,2,...,n with the initial condition Q9 = 0, which indicates that a
given node is always present in generation zero of its descendants.

For a random graph, a randomly chosen node the randomly chosen node
has k outgoing edges with the original probability p. Thus it has a slightly
different probability Q,, of not having descendants in its nth generation:

Qn(p) =Y (1 = p) + PQn-1)* (10)
k=1

If we denote by f,,(p) , the probability that starting at a randomly chosen
node we can reach, or survive up to, the nth generation, then

fn =1- Qn (11)
and hence,
fnzl_zpk(l_pfn—l)k (12)
k=1
while for 1 <l <n
fi=1= pek(1 —pfi1)¥"/(k) (13)

k=1
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Fig. 3. The probability distribution of the maximal random number emax along
the optimal path obtained using simulations on a random graph with (k) = 4 and
using the analytical method on a Cayley tree with Poisson degree distribution and
(k) = 4.The simulations involve 100000 network realizations and are carried out
on a network of 65536 nodes. The values of lop¢ for this network lie in the range
40 < Lopt < 120.

and fo =1.

If n goes to infinity, this formula converges exponentially to the probability
foo = Py for a node to be connected to infinity for any p except for p. =
(k)] > pe, pek(k—1), where the convergence is a power law. In the asymptotic
limit of the optimal path problem, we have a pair of nodes separated by a
very long path £,p¢. The probability IT(p), that they will be connected at
given p, is in fact can be approximated by the probability that both of them
are connected to the infinity and hence

II(p) = P%. (14)
For the Poisson degree distribution p;, = z*e~%/k!, P, (p) satisfies
Py =1—e PP, (15)
and
O(p) = (1—e"PP=)?/(1 —e)> (16)

In the bombing algorithm, the largest random number on the path, €yax,
is equal to the fraction of remaining bonds at which, for the first time the
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connectivity would be lost, if we remove bonds in the descending order of
€. Thus the probability P(emax < p) = II(p), which is the probability that
connectivity is not lost when a fraction p of bonds is removed. The probability
density of the maximum random number € on this path is thus equal to the
derivative of this function with respect to p:

d

P(emax) = e (P) lp=emax (17)

In Fig. 3 we plot two curves. The first curve is the true probability dis-
tribution of €max in a strongly disordered random graph with (k) = 4. The
second curve shows the same probability distribution obtained using the an-
alytical method described above using a Cayley tree approximation of the
graph with a Poisson degree distribution and (k) = 4. The curves coincide
very well, indicating the excellent agreement between the theoretical analysis
and simulation.
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