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Abstract
Real networks, like the international airport network and the Internet, are composed of
interconnected layers (or communities) through a small fraction of nodes that we call here ‘bridge
nodes’. These nodes are crucial in the spreading of epidemics because they enable the spread the
disease to the entire system. In this workwe study the effect of the bridge nodes on the susceptible-
infected-recoveredmodel in a two layer networkwith a small fraction r of these nodes. In the
dynamical process, we theoretically determine that at criticality and for the limit r→0, the time tb at
which thefirst bridge node is infected diverges as a power-lawwith r, while above criticality, it appears
a crossover between a logarithmic and a power-law behavior. Additionally, in the steady state at
criticality, the fraction of recovered nodes scales with r as a power-lawwhose exponent can be
understood from the finite size cluster distribution at criticality.We also test ourmodel on the real
international airline network and show that ‘high-degree bridge nodes’ reduce the time tb.

1. Introduction

One of themain aspects of the spread of contagious diseases in society, such as the Influenza [1], Ebola [2], and
syphilis [3] is that these processes rely not only on the pathogen-specific characteristics but also on the structure
of the network of interactions among individuals. Consequently, in the last two decades,many researchers have
studied the effect of the structure of complex networks on the spread of epidemics, in order to improve the
epidemic forecast and to propose efficient strategies tomitigate their effects on the population [4, 5]. Initially,
most researches have focused on isolated networks, but in the recent years, in particular, since 2010 [6]
multilayer networks or network-of-networks (NON) attractedmuch interest, since they aremore general and
suitable tomodelmore realistic interactions between people. In aNON, the nodes in a networkwhich interact
with nodes in other networks are called here ‘bridge nodes’ [7] and the links that connect bridge nodes of
different networks are called ‘external links’. On the other hand, within each layer, all the nodes (including the
bridge ones) are connected by internal links. One of themost fundamentalmicroscopicmeasures that
characterize the topology or internal structure of a network is the degree distribution P(k), which is the fraction
of nodes with k internal contacts within the same network [8]. A particular class ofNON is themultilayer
networks [9, 10] inwhich a fraction r�1 of nodes are bridge nodes in each network or layer, and each of these
nodes are connected or ‘interacts’with only one bridge node in the other layers [11]. This structure thatwe call a
simplemultilayer network, is suitable for example, formodeling the propagation of a rumor inwhich an
individual can transmit the rumor both in a virtual layer (for example Facebook) and in a physical network or
layer of face-to-face contact [12]. The individual who participates in both layers is represented by a bridge node
in each layer, which is connected to each other through an external link. Several studies showed that simple
multilayer networks boost the propagation of information [12], accelerate diffusion processes [13], delay
reactions [14] and increase the virulence of diseases with respect to an isolated network [15].
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In the last two decades, severalmathematicalmodels have been developed using complex networks as a
substrate to describe the spread of diseases [4, 16, 17]. One of themost studiedmodels is the Susceptible-
Infected-Recovered (SIR)which is suitable for diseases that confer permanent immunity [18]. In thismodel,
initially each node is in the susceptible state (S), that is, it is healthy but not immunized to the disease, except for
an infected individual (I), which is called the index case. Each individual in state I can transmit the disease to his/
her contacts in state Swith probabilityβ during a time tr since he/she became infected. After that period, the
individual I goes to the recovered state (R) and stops transmitting the disease. The epidemics continues
spreading until it reaches the steady state inwhich there are nomore infected individuals. Depending on the
context, we also refer to S, I andR as the fraction of susceptible, infected and recovered individuals, respectively.
One of themain features of thismodel in the steady state, is that it undergoes a second order phase transition
between two regimes that are governed by the transmissibilityT [19]. This quantity represents the effective
probability of contagion, given byT 1 1 trb= - -( ) and it is the control parameter of the transition. This
transition occurs at a critical valueT=Tc which depends on the topology of the system.On the other hand, the
order parameter of the system is the fraction of recovered individualsR in the steady state. It is known that in
isolated networks aswell as in simplemultilayer networks, the SIRmodel in the steady state can be exactly
mapped onto link percolation [15, 19, 20]. In this framework, the fraction of recovered nodesR is analogous to
the fraction of nodes in the giant component (GC), andT plays the role of the probability p of link occupation. In
isolated single networks, there is only one single component or cluster of recovered nodes in the steady state.
Similarly, in simplemultilayer networks, there is only one cluster of recovered nodes, formed by both internal
and external links that are used to transmit the disease [15].

Although the spread of diseases in simplemultilayer networks has been extensively investigated in recent
years, the effect of bridge nodes withmultiple external links has received little attention. On the other hand, in
some realmultilayer networks, there are usually few bridge nodes in each layer and in turn they havemany
external connections compared to the average degree in their layer. This kind of structure appears when only few
nodes in one layer have sufficient infrastructure, and the necessary economic and human resources to connect
with nodes in other layers. For example, in some social networks, only a few individuals of one community or
layermay have the necessary skills to establish commercial and cultural relationships with individuals from
other layers [21]. In another example, in a national and international airport network,most of the airports in a
country (layer) only serve national flights, while a small set of airports serve international flights from and to
other countries (layers) [22]. One additional feature of these international airports (bridge nodes) is that they
may havemany external links, i.e. flights tomany nodes in other layers since they have the necessary
infrastructure to support the air traffic to and frommany countries. These bridge nodes with a large number of
external links are called ‘central bridge nodes’, which could be considered as influential spreaders or
superspreaders [23–25]. Hereafter, for simplicity, wewill refer to the ‘central bridge nodes’ as ‘bridge nodes’.
This type of structure ismore general than the simplemultilayermodel5. Very recently, Dong et al [11] studied a
node percolation process on this structure and obtained that the fraction of nodes in theGCbehaves as a power
lawwith the fraction of bridge nodes r, which is analogous to the relation between themagnetization and the
externalfield in the Isingmodel.

In this work, we study the SIRmodel in a two-layered networkwith a fraction r of central bridge nodes
during the dynamic process and in the steady state. In section 2we present ourmodel and the dynamic
equations. In sections 3 and 4we show the scaling properties of the time tb at which the disease reaches thefirst
bridge node. In section 5we focus on the steady state of the epidemic process at criticality, i.e. at the critical point
and explain how the structure of the recovered clusters explains the scaling relation between the fraction of
recovered nodes and the fraction of bridge nodes. In section 6we apply ourmodel to real flight networks. Finally
in section 7we present our conclusions.

2.Model and dynamic equations

In this paper we study the SIRmodel in a systemof two layers or networks with the same number of nodesN, in
which a fraction r of nodes in each layer are ‘bridge nodes’, that is, they have external linkswhich connect to
bridge nodes in the other layer. Additionally, we consider that the external connectivity follows a Poisson or
Erdös Rényi (ER) distributionwith amean external connectivity equal to k c rextá ñ = , where c is a constant.
This implies that r k cextá ñ = , so the total number of external linksMI is constant and equal to cN. The Poisson
distribution in the external connectivity will allow us to study the effect of an increasingmean external

5
Note that the structure of ourmodel with two layers can be interpreted as a networkwith two communities. Heuristically, a community is a

subnetwork inwhich the density of its internal links is greater than its external links. However, since in ourmodel the number of external
links could be comparable to the number of internal links, we prefer to use the termof layers andmultilayer networks, instead of network
with communities.
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connectivity while the number of external links is constant. Unless otherwise indicated, the bridge nodes are
chosen randomly and the external links only connect bridge nodes fromdifferent layers. The nodes that do not
have external links are called ‘internal nodes’. In themain text of this work, we present our results forMI=N,
but in the appendix the reader can find our results forMI<N. For the stochastic simulations of the SIRmodel,
we randomly choose the index case in one layer, which can be also a bridge node.

In order to study the evolution of the states of the individuals in the SIRwithfixed recovery time, we use the
edge-based compartmentalmodel (EBCM) [26–28]. In single networks, this approach is based on using two
generating functions. Thefirst one is the generating function of the node degree distribution P(k)which is given
by G x P k xk

k
0 = å( ) ( ) , with kmin�k�kmax.Here, kmin and kmax are theminimumandmaximumvalues of

the degree distribution. The second one is the generating function of the degree distribution of thefirst
neighbors of a node, P k kP k k1 º á ñ( ) ( ) , given by G x kP k k xk

k
1

1= å á ñ -( ) ( ) , where ká ñ is thefirstmoment of
P(k). Here, P1(k) is the probability to reach a neighbor of a nodewith degree k, following a random chosen link.
For simplicity, wewill assume in this work that both networks have the same degree distribution in order to
reduce the number of equations.

The EBCMapproach describes the evolution of the fraction of susceptible (S(t)), infected (I(t)) and recovered
(R(t)) individuals at time t by computing an auxiliary probability θ(t). Note that this approach is only valid in the
deterministic regime of the epidemic spreading, that is, when the fluctuations of the number of infected nodes at
time t are negligible with respect to themean number of infected nodes. In a single network, θ(t)≡θt stands for
the probability that a randomly chosen node through a link has not transmitted the disease towards this link.
This could be due to the following cases:

(i) the node is susceptible with probabilityΦS(t), so it cannot transmit the disease,

(ii) the node is infected, but it has not transmitted the disease yet, with probabilityΦI(t).

(iii) the node is recovered and it did not transmit the diseasewhile it was infected, with probabilityΦR(t).

Therefore, θt is given by, θt=ΦS(t)+ΦI(t)+ΦR(t).
Then, given a nodewith degree k, the probability that none of its neighbors has transmitted the disease to

him/her at time t is t
kq . If this node is not the index case, i.e. it is not an infected node at the initial condition, then

it is in the susceptible state at the beginning of the dynamic process. Since, the fraction of index cases is negligible,
then the fraction of susceptible nodes is S t P k Gk t

k
t0q q= å =( ) ( ) ( ) for all t.

Similarly, in a two layer networks with the same degree distribution, the following relations hold:
t t tt

i
S
i

I
i

R
iq = F + F + F( ) ( ) ( ) and t t tt

b
S
b

I
b

R
bq = F + F + F( ) ( ) ( ), where themagnitudes with a supra-index i

and b correspond to the internal and external links or internal and bridge nodes, respectively. Note that the
equations do not have an index that indicates the number of the layer becausewe assume, asmentioned earlier,
that both layers have the same degree distribution. Using the EBCMadapted to SIRwithfixed tr, the evolution of

t
iq , t

bq , tS
iF ( ), tS

bF ( ), tI
iF ( ) and tI

bF ( ) are given by the deterministic equations

t , 1t
i

t
i

I
i

1q q b= - F+ ( ) ( )

t , 2t
b

t
b

I
b

1q q b= - F+ ( ) ( )

r G G r G G G G1 , 3S
i i

t
i i

t
i i

t
i b

t
b i

t
i b

t
b

1 1 1 1 1 0 1 1 0q q q q q qDF = - - + -+ + +( )[ ( ) ( )] [ ( ) ( ) ( ) ( )] ( )

G G G G , 4S
b i

t
i b

t
b i

t
i b

t
b

0 1 1 1 0 1q q q qDF = -+ +( ) ( ) ( ) ( ) ( )

t T t t1 , 5I
i

I
i

S
i

S
i

rbDF = - F - DF + - DF -( ) ( ) ( ) ( )

t T t t1 , 6I
b

I
b

S
b

S
b

rbDF = - F - DF + - DF -( ) ( ) ( ) ( )

whereΔ is the discrete change of the variables between times t and t+1. Equation (1) computes the change in

t
iq when an infected internal node transmits the diseasewith probabilityβ. Equation (3) represents the change
in S

iF when an internal node is infected (first term) and a bridge node is infected (second term). Note that
t 0S

iDF <( ) . Finally, equation (5) computes the variation of I
iF due to: (i) an infected node transmits the disease

which decreases I
iF (first term), (ii) there are new links that lead to the new infected nodes (second term), and

(iii) the infected nodeswhich have not transmitted the diseasewith probability 1−T during a period tr, are
recovered. Equations (2), (4), and (6) have similar interpretations for the bridge nodes.

Using the equations given above, we can compute the fraction of susceptible and infected nodes as,

S r G G1 , 7i i
t
i i

t
i

0 1 0q qD = - -+( )[ ( ) ( )] ( )

S r G G G G , 8b i
t
i b

t
b i

t
i b

t
b

0 1 0 1 0 0q q q qD = -+ +[ ( ) ( ) ( ) ( )] ( )

I S S t t , 9i i i
rD = -D + D -( ) ( )

3

New J. Phys. 20 (2018) 125003 LDValdez et al



I S S t t , 10b b b
rD = -D + D -( ) ( )

where S i (I i) and S b (I b) are the fractions of susceptible (infected) internal and bridges nodes, respectively.
In order to understand the effect of the bridge nodes on the epidemic spreading, infigure 1we plot the

evolution of the fraction of infected internal nodes I i, infected bridge nodes I b, and the total fraction of infected
nodes I=I i+I b, for different values of r, atT T r k k k0c

2= = = á ñ á ñ - á ñ( ) ( ), i.e. at the critical
transmissibility value for a single network.Here k2á ñ is the secondmoment of the degree distribution.

From figure 1we can see that as the fraction of bridge nodes r decreases, a second sharp peak appears in I.
This sharp peak is caused by the fast spreading of the infection between the bridge nodes because they have a
large connectivity ( k r1extá ñ = ) and they are connected to each other, sowhen one bridge node is infected the
disease spreads very fast among them. This represents the high vulnerability for disease spreading of
international airports during an epidemic spreading. After these nodes are infected, the disease continues
spreading to the rest of the network. That is, for very small r, bridge nodes and internal nodes are infected at two
different characteristic times, as seen clearly infigure 1(c), since the curve I(t)has two peaks. Thefirst one
corresponds to the bridge nodes while the second one to the internal nodes.

From the insets of thefigures, we also can see that as r decreases, the disease or epidemics ‘explodes’ only after
thefirst bridge node is infected at time tb. Thismagnitude is also related to the ‘arrival time’which is themoment
at which thefirst infected node appears in the other community,metapopulation or layer [7, 29]. Since in such
networks, the ‘explosion’ of the epidemics is governed by the bridge nodes, it is of interest to compute the
average time tb at which the first bridge node is infected, because after that, the fraction of infected nodeswill rise
very quickly. Unlike our dynamical equations (1)–(10) for the deterministic evolution of the fraction infected
nodeswhich assume that both layers are of the same size, the computation of tb can be applied to layers of
different sizes, because tb depends only on the topology of the layer inwhich the disease originates. In the
following sections, wewill study the dependency of tb on r forT=Tc andTTc (note again thatTc is for a
single networkwith r=0).

3. Time to reach thefirst bridge node tb atT T r 0c= =( )

In this sectionwe study the relation between tb and the fraction of bridge nodes, r, when the disease has started in
one layer before reaching the other layer. It is important to remark that tb only depends on the network topology

Figure 1.Time evolution of the total fraction of infected nodes I=I i+I b, infected internal nodes I i and infected bridge nodes I b for
two layers with a ER distributionwith k 4á ñ = ,T=Tc(r=0)=0.25 (this is the critical transmissibility for an isolated networkwith
the same degree distribution), tr=10 and: (a) r=0.20, (b) r=0.05, and (c) r=0.01. The colored lines correspond to 100 stochastic
realizations withN=105 for: I (pink), I i (light blue) and I b (orange), and the black lines correspond to the theoretical solutions
obtained from equations (1)–(10). In themain plot we shifted the time to t=0when the fraction of total nodes in the infected state
is equal to 0.01, in order to compare the theoretical solutionwith the simulations [26, 28]. In the insets we show 100 stochastic
realizations of I (pink) in log-linear scale. In the insets we shifted for each realization, the time to t=0 (indicated by a dashed vertical
line)when thefirst bridge node is infected at time tb in the simulations.
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and the fraction of bridge nodes of the layer inwhich the disease originates, becausewhen t�tb the disease has
not reached the other layer.

Using the branching formalism (see appendix C)we obtain that atT=Tc, the average time at which the first
bridge node is infected, is a decreasing functionwith the fraction r, as expected.Moreover, we obtain
theoretically that the relation is a power law: t rb

1 2~ - for homogeneous networks and t rb
3 2~ l l- - -( ) ( ) for

SF networks with degree distribution P(k)∼k−λ and 3<λ<4 (see appendix C). Infigure 2we show the
simulations and the theoretical solutions of tb versus r atT=Tc(r=0) for these networks, andwe obtain that
the exponent is consistent with our theoretical predictions.

This relation between tb and r can also be obtained using scaling theory [30]. Considering a Leath [31] or link
percolation process atT=Tc, afinite cluster of occupied links leads to the set of recovered nodes in an outbreak
which is originated from an index case. The size of this cluster is R N º , whereR is the fraction of recovered
nodes andN is the size of the network. The average shortest path between all the nodes in that cluster is denoted
byℓ, which it is expected to be proportional to the duration of the outbreak. It is known that at criticality (i.e. at
the critical point), dl ~ ℓ , where dl is the chemical dimension [32, 33].We are interested in the time tb that
takes the disease to reach thefirst bridge node as a function of r (assuming that the cluster has at least one bridge
node). Let us consider afinite cluster of size with n bridge nodes, thenwe expect that if a node of the cluster is
the index patient or the source of the epidemic, then the time tbwill be proportional to the distance between this
index case and the nearest bridge node. Theminimumchemical distance to the nearest bridge node can be found
by partitioning the cluster into n subclusters, one for each bridge node (seefigure 3(a)). Thus a node v in the
cluster belongs to the subcluster of the bridge node uwhen the node u is the nearest bridge node of v among all
the bridge nodes in the cluster. The averageminimumchemical distance in each subclusterℓsubcluster behaves as
ℓ since the cluster of infected nodes is a fractal at criticality [33]. Additionally, the averagemass of each subcluster
is n and atT=Tc we expect that (see also,figure 3(b))

Figure 2. (a): Time tb as a function of r atT=Tc in log–log scale, for tr=1 in simulations on ERnetworkwith k 4á ñ = andN=106.
(b): Time tb as a function of r atT=Tc in log–log scale, for tr=1 in simulations on a Scale-Free (SF)networkwithλ=3.5, kmin=2,
andN=106. The symbols represent the averaging over of 105 stochastic realizations and, the solid lines represent the theoretical
solutions from the appendixC. In the insets we plot the theoretical solution shown in themain plot (black solid line). The dashed red
lines represent a power-law fit of the theoretical solution. Comparing themain plotswith the insets, the exponent of the power law fit
approaches to the theoretical value 1/dl (see equation (13)) as r decreases. Here, tb does not have any shift as infigure 1.

Figure 3. (a) Schematic of a cluster in a link percolation process with three bridge nodes (squares). The cluster can be partitioned in
three subclusters. A node v in the cluster belongs to the subcluster of the bridge node uwhen the node u is the nearest bridge node of v
among all the bridge nodes in the cluster. (b) Subclustermass as a function ofℓsubcluster (see equation (11)) in log–log scale for a ER
networkwith k 4á ñ = andN=105 atT=Tc=0.25. The symbols represent the simulation results obtained from5000 stochastic
realizations and the dashed line a power-law fit. The theoretical value of the exponent dl is dl=2.
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n
, 11d

subcluster
l


~ ℓ ( )

whereℓsubcluster is the average shortest path from anode to the bridge node of this subcluster. Since the
probability that a node is a bridge is uniform, the density of bridge nodes in the network is equal to the density of
bridge nodes in the cluster of size, i.e. n r » , which leads to

r . 12d1
subcluster

l~- ℓ ( )

On the other hand, we expect thatℓsubcluster∼tb [34], sofinally

t r . 13d
b

1 l~ - ( )

For ERnetworks dl=2 and for SF networkswith 3<λ<4, dl=(λ−2)/(λ−3) [35].

4. Crossover regimes of tb forT T r 0c =( )

Integrating the equations of time evolution for the stochastic regime forTTc(r=0) (see appendix C)we
obtain that tb as a function of r has two regimes, which are separated by a crossover at r=r* (seefigures 4(a) and
(b)). For r>r*we obtain that t r d

b
1 l~ - as in the previous section. On the other hand, for r<r*, the time

tb is a logarithmic functionwith r. This behavior is expected since for large r, the distance between the bridge
nodes is small and the system is like at criticality.While for small values of r, the disease needs to cross longer
distances to reach a bridge node and it behaves like above the criticality, i.e. the distance between two nodes
is a logarithmic function ofN [36]. Therefore, using similar arguments to the previous section, we can obtain
the behavior t rlnb ~ - ( ) for r<r*. Indeed, from the numerical results we obtain that above criticality
t A T T B r, lnb c~ -( ) ( ) for ERnetworks and SF networkswith 3<λ<4, i.e. the expected r dependence. In
addition, we get thatA(T,Tc) is a function of the distance to the criticalityT−Tc, and B T Tc

1= - -( ) for both
topologies. Therefore, tb behaves as

Figure 4.Time tb as a function of r obtained from the equations of the appendix C. (a): for an ERnetworkwith k 4á ñ = for
T=0.250 625 (black),T=0.250 78 (red),T=0.250 976 (green) andT=0.251 220 7 (blue). (b): SF networkwith kmin=2 and
λ=3.5 forT=0.269 325 (black),T=0.269 481 (red),T=0.269 92 (green), andT=0.270 226 (blue). Themainfigures in panels
(a) and (b) are in log-linear scale. The insets shows in log–log scale for identifying the slope of the logarithmic term in equation (14).
The symbols are obtained from a logarithmic fit of the curves in themain plot for small values of r, and the dashed line is a power law
fit. Panels (c) and (d) show the same curves as in (a) and (b), respectively, in log–log scale. The dashed lines are a power lawfit with
exponent−0.53 for the ER network and−0.35 for the SF network, which are consistent with the exponent−1/dl predicted in
section 3.
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r r r
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. 14

db
c c

1

1 l

*

*
~

- - -

-




⎧⎨⎩
( ) ( ) ( ) ( )

The scaling results of equation (14) are supported by the numerical solution of the theory in the appendix C
as seen infigure 4.

In the following, we study inmore detail the transition between the logarithmic regime and the power-law
regime.

In order to avoid toworkwith the y-intercept (i.e. the functionA(T,Tc)) and the logarithmic function,
instead of using the equation (14), wewill workwith the derivative of tbwith respect to r.

Based on equation (14)wepropose the following scaling Anzat for dtb/dr,

t

r

T
r

r r

r r r

d

d

1
; if

1

d
if .

15

l

b

1

1 d 1l

*

*
~

- D <

- >

-

- +

⎧
⎨
⎪⎪

⎩
⎪⎪

( )
( )

( )

The crossover is defined by the point r=r* at which both regimes intersects, and is given by

r T . 16dl* ~ D( ) ( )

In addition, we have that at r=r*,

t

r
T

d

d
. 17b

r r

d 1l

*
~ D

=

- + ( )( )

Applying to the function dtb/dr the transformations: r→ r/r* and t r t r Td d d d d
b b

1l D + (where
ΔT≡T−Tc)we obtain that the curves dtb/dr collapse (see figure 5). Therefore, equation (15) can bewritten
as

t

r
T F

r

r

d

d
, 18b d 1l

*
= D - + ⎜ ⎟⎛

⎝
⎞
⎠ ( )( )

where F(x) is given by

F x
x x

x x

; if 1

if 1
19

d d

1

1l l
~

-

- +




⎧⎨⎩( ) ( )
( )

with x=r/r*.
Besides the rich behavior of tb which corresponds to the beginning of the epidemic, in the next sectionwe

will show that in the steady state, the bridge nodes also generates a power-law behavior in the fraction of
recovered nodes as a function of r, similar toDong et al [11]. However, unlike [11]which interpreted that power-
law as an externalfield, wewill explain this behavior from a geometrical point of view.

5. The steady state

5.1.T�Tc

In ourmodel with two layers, increasing fraction of bridge nodes generates a large number of infected nodes
since bridge nodes have a high external degree. However, an increase in r decreases the external connectivity

Figure 5.Collapse of the curves dtb/dr as a function of r. (a)ERnetworkwith k 4á ñ = forT=0.250 625 (black),T=0.250 78 (red),
T=0.250 976 (green) andT=0.251 2207 (blue). (b) SF networkwith kmin=2 andλ=3.5 forT=0.269 325 (black),
T=0.269 481 (red),T=0.269 92 (green), andT=0.270 226 (blue). The dotted line indicates the position of the crossover. The
figures are in log–log scale.
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which reduces the disease propagation. Therefore, there exist a nonlinear relation betweenR and r, as can be seen
infigure 6. In the appendix Awe show that this behavior does not depend on the value of k rextá ñ . In addition, for
r→0, we observe (see inset offigure 6(b)) thatR as a function of r is a power-lawwith exponent 1/δ=1/2 for
T=Tc(r=0) and 1/δ=1 forT<Tc(r=0).

The origin of the exponent atT=Tc(r=0) is due to the particular structure of the cluster of recovered
nodes since the infection tree is composed by finite clusters of recovered nodes in each layer, that are connected
through bridge nodes (see figure 7(a)). Infigure 7(b)we show the probability of recovered clusters P(s) of size s
in each layer (obtained from stochastic simulations in a ERnetwork and SF networkwithλ=3.5 at
T=Tc(r=0))which follows a power-law distributionwith exponent τ−1, where τ=5/2 for ERnetworks
and τ=2+1/(λ−2)=2.66 for SF networks withλ=3.5 [37].

In the following, we present a geometric interpretation of ourmodel and show theoretically that the
structure of the infection tree explains the exponent of the power-law betweenR and r, using the probability P(s).

In ourmodel it is expected that as r→0 atT=Tc(r=0), almost every bridge nodes will be infected since
they have a large external connectivity. Each of these nodes will be the seed of thefinite outbreak or cluster in
each layer. In this case, the infection tree is composed by thesefinite clusters and hence the fraction of recovered
nodes is proportional to the sumof the sizes of thesefinite clusters inwhich one node of each cluster is a bridge
node. This can bewritten as

R P s r x P s r x

P s r x

1 1 1 2 1 1

3 1 1 ..., 20

1 2 2

3 3

= = - - + = - -
+ = - - +

( )( ( ) ) ( )( ( ) )
( )( ( ) ) ( )

where P(s) is the probability that a randomly chosen node belongs to a cluster of size s and (1−(1−r)s) is the
probability that this cluster has a bridge node (with x= 1).We can approximateR as

Figure 6. (a) Fraction of recovered nodes in the steady state as a function ofT for an ERnetworkwith k 4á ñ = and r=10−1 (black),
r=10−2 (red), r=10−3 (green) and r=10−4 (blue). (b) Fraction of recovered nodes as a function of r forT=Tc(r)=0.25 (black)
andT=0.20 (red). The inset is themain plot in log–log scale. The dashed lines represent a power-law fit.

Figure 7. (a) Schematic of the structure of the recovered nodes in the steady state forT=Tc(r=0). The gray nodes correspond to
susceptible nodes, the black node is the index case, and the green ones are the recovered nodes. The square nodes represent bridge
nodes and the green areas represent the internal clusters of recovered nodes. (b)Probability offinite clusters sizes in each layer in the
steady state forT=Tc(r=0) in an ERnetworkwith k 4á ñ = (circles) and a SF networkwithλ = 3.5 and kmin = 2 (squares),
r = 0.001 andN = 106 obtained from 50 000 stochastic realizations. The dashed lines represent the power lawfits.
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=
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( ) ( ) ( )
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1
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¥
( ) ( ) ( )

A P s s r s1 exp ln 1 d . 23
1
ò» - -

¥
( ) ( ( )) ( )

If r=1 then s r r rsexp ln 1 1 1s- = - » -( ( )) ( ) , andwhenT Tc< it holds that
P s s s sexp1

max~ -t- +( ) ( ) [38], where s T Tmax c
1~ - s-∣ ∣ . Thus,

R A rs s s s s1 1 exp d , 24
1

1
maxò» - - -t

¥
- +( ) ( ) ( )

where
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s s s s

1

exp d
. 25

1
1

maxò
=

-t¥ - + ( )
( )

Since forT<Tc, s s s sexp d
1

2
maxò -t¥ - + ( ) does not divergewhen r→0, thenwe obtain that,R∼r, i.e.

1 1, 26d = ( )

forT<Tc.
On the other hand, forT=Tc, smax  ¥; and if r=1 then r rln 1 - » -( ) . In this caseR can be

approximated by6
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Denoting u=rs, and integrating by part
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sofinally,R∼r τ−2, i.e.

1 2. 30d t= - ( )

Thus, forT=Tc, the exponent of the scaling relation betweenR and r is related to the Fisher exponent of the
finite size cluster distribution. Therefore at criticality, alternatively to the interpretation of the exponent 1/δ as
the result of an ‘externalfield’ [11], here we show theoretically that this exponent can be understood from the
distribution offinite cluster sizes in one layer. This exponent was also studied in the context of semiconductors
and percolation in the presence of a ‘ghost field’ [30, 39, 40].

5.2.T Tc>
While above criticality,R does not go to zerowhen r→0, we obtain theoretically that TR

r r
d

d 0
1~ D

-∣ ( ) for

ER and SF networks. Here, R

r r
d

d 0∣ is related to the divergence of the average size of the finite clusters (see
appendix B).

On the other hand, above criticality the contribution offinite clusters to theGC is dependent on two factors.
First, note that in equation (27) the contribution of the finite size cluster distribution P(s) that compose theGC is
constrained by an exponential function s s rsexp expr- = -( ) ( ), where sr=1/r is the cutoff imposed by the
fraction of bridge nodes. This is due to the fact that during the dynamic process, the finite clusters cannot grow
without any constrain because these clusters interfere with each other. Second, for single networks, it is known
that above criticality, P s s s sexp max~ -t-( ) ( )where s T Tmax c

1~ - s-∣ ∣ / , i.e. there is another cutoff imposed
by the transmissibility. Therefore in a bilayer network forT>Tc, the cutoff of the finite size distribution in one
layer can be imposed either by the fraction of bridge nodes or by the transmissibility.When the transmissibility is

6
Note that we do not use the approximation r rs1 1s- » -( ) because it would lead to a divergent integral.
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very close toTc or r is not small, then sr=smax i.e. the cutoff imposed by the bridge nodes dominates the finite
cluster distribution, and the systembehaves as at criticality, since it does not ‘see’ the cutoff imposed by the
transmissibility. The opposite occurs whenT is well aboveTc or r=1.Denoting r† as the value of the fraction of
bridge nodes at which both cutoffs are comparable, then

r T T , 31c
1~ - s∣ ∣ ( )†

and using thatσ=1/(dlνl) [35], we obtain that

r T T , 32d
c l l~ - n(∣ ∣ ) ( )†

Finally, since for uncorrelated homogeneous networks and SF networks νl=1 [35],

r T T , 33d
c l~ -∣ ∣ ( )†

which is the same relation as in equation (16), i.e. the crossover r* of the time tb between the logarithmic regime
and the power law regime. Thus, the crossover of the time tb scales withT−Tc as the crossover r

† between the
cutoff imposed by the transmissibility and the cutoff imposed by the bridge nodes. Therefore r†∼r*.Moreover,
since the correlation length behaves as T Tc

lx ~ - n-∣ ∣ (where νl=1 for ER and SF networks, asmentioned
above), this result suggests that the coefficient of the logarithmic term in equation (14) is related to the
correlation length.

6. Real networks

Wenext examine how the topology and the selection of bridge nodes (targeted or random) affects tb.
Flight transportation data arewidely available through different online sources. In this work, we considered

the Flightradar24flight tracker [41] as themain source of data in order to demonstrate our results on a real world
example of a two layer complex network. In this work, we consider ourflight networks as being the networks
where the airports are represented by nodes and the routes among themby links. According to its ownwebsite
description, Flightradar24 is aflight tracker that shows live air traffic from around theworld. Flightradar24
combines data from several data sources including automatic dependent surveillance-broadcast (ADS-B),
Multilateration (MLAT) and radar data. TheADS-B,MLAT and radar data is aggregated together with schedule
andflight status data from airlines and airports to create their flight tracker datasets with live online access. For
security and privacy reasons information about some aircraft is limited or blocked. This includesmostmilitary
aircraft and certain high profile aircraft. The site provides information of current and historicalflights, such as
the destination and origin airports, the flight status (flight codes, arrival and departures times, etc), airlines and
aircraftmodels. For the purpose of this work, we build two different networks. One considering only those
flights within theUnited States, anotherwithin Europe, both connected by links represented by the flights
among them (between bridge nodes). It was shown that these flights networks typically have a highly connected
set of core airports (mainly hubs) and a few connections to and among periphery airports, in a so called core-
periphery structure, typical for real-world airline networks [42]. Infigure 8we showboth networks and their
actual degree distribution P(k).

Since these networks have afinite size, we use the effective critical transmissibility which is obtained by
measuring the position of the peak of the second largest cluster size in a link percolation process as a function of
the link occupation probability. Infigure 9we plot tb as a function of r forT=Tc of each network in themain
figure and forT�Tc in the insets obtained from the simulations. In these subfigures wefind that whenT>Tc

the time tb behaves as a logarithmic functionwith r. However, forT=Tc we cannot observe a power law
behavior as predicted by our theory in section 4 due tofinite size effects (N∼103). On the other hand, from the
mainfigures, we can see that the real networkwith the real bridge nodes has a smaller tb than expected for
randomly chosen bridge nodes. This is due to the fact that the actual bridge nodes have an average degree well
above ká ñ. Specifically, k 26.5á ñ = for Europe and k 17.9á ñ = forUSA, while the average connectivities of the
actual bridge nodes are: 77.3 and 90.2, respectively. Since these bridges airports have a higher degree than the
average ká ñ, then they can be infectedmore quickly than other airports. To test this effect of the degree of the
bridge nodes on tb, we analyze infigure 9 the time tb as a function r, inwhich the fraction r corresponds to the
nodes with the highest degree, called ‘targeted bridge nodes’. Indeed, we obtain that the disease reaches a bridge
node earlier that in the case of randomly chosen bridge nodes. Furthermore, the time tb for the targeted case is in
agreementwith the case for the actual fraction of bridge nodes (see the green cross infigure 9).

On the other hand, to study the effect of the topology on tb in real finite networks, we also compute tb versus r
for an infinite synthetic uncorrelated networkwith the actual degree distribution as a ‘nullmodel’ (i.e. as a
baseline to compare with the real network), using the equations of the appendix C. For randomly chosen bridge
nodes, we obtain that for small values of r afinite network has a smaller time tb than an infinite network, which is
expected since the loops or cycles in afinite networkwould tend to decrease the distance between nodes and
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hence the time to reach a bridge node. Notably, for larger values of r, tb versus r is almost the same for an infinite
uncorrelated network and afinite real networks. This result indicates that in this regime the topology
magnitudes like the degree–degree correlation and clustering are less important to predict tb. Indeed, as r→1,
the probability that the first infected node is a bridge, increases. Therefore, the effect of the core-periphery
structure, clustering and degree–degree correlation on tb should not affect the value of tb.

7. Conclusions

Since in real networks, like in the flight network, the bridge nodes are vulnerable and are able to boost the
spreading of a disease, it is important to understand their role in the spreading. In this paper, we study the effect

Figure 8.Real airline networks and their degree distribution for Europe (a) andUSA (b), obtained from the Flightradar24 data [41].
The sizes are:N=425 for Europe andN=973 forUSA, and the number of links are: 5636 and 8724, respectively. The degree–degree
(rp) correlation and clustering coefficients (C) are: rp=−0.14 andC=0.59 for Europe, and rp=0.09 andC=0.30 forUSA.

Figure 9. (a) tb versus r for EuropewithTc=0.019 and (b)USAwithTc=0.021. The solid black line is obtained from the equations
derived in appendixC using the real degree distribution, and choosing randomly the bridge nodes. The red and blue symbols
correspond to the real networkswith randomand targeted bridge nodes, respectively. Finally the green symbol is obtained from the
real network and the real bridge nodes (fixed r value). In the insets we show tb versus r for the real networks with randomly chosen
bridge nodes, in linear-log scale for (fromup to down):T=Tc,T=0.05,T=0.10,T=0.15 andT=0.20.We average our
simulation results over 104 stochastic realizations.
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of the bridge nodes on the dynamic spreading in a two layer network.We obtain that at criticality, these nodes
are crucial for spreading the disease to the entire global system and their presence induces a double peak on the
number of infected individuals during the dynamicwhich corresponds to the infection of the bridge and non-
bridge nodes.Moreover, the fraction of infected nodes increases rapidly after the disease reaches the first bridge
node, so the time tb at which the epidemic reaches this node is of great importance to predict the ‘explosion’ of
the epidemic.We showed that at criticality in the stochastic regime of the spreading process the time tb behaves
as a power lawwith the fraction of bridge nodes r, with an exponent related to the chemical dimension.
Additionally, above criticality, tb follows a scaling functionwith two regimes separated by a crossover r=r*. For
r<r* tb behaves a logarithmic functionwhile for r>r*, it follows a power-law function.We showed that this
behavior emerges as the result of the ‘competition’ between two scales: one imposed by the transmissibility
through the correlation length and the other imposed by the fraction of bridge nodes which constrain the size of
afinite infected cluster. On the other hand, in the steady state, we showed that at criticality the fraction of
recovered nodes obeys a power law functionwith r.Wefind that the origin of the exponent is related to the finite
cluster size distribution since the structure of the epidemic cluster is composed by a distribution offinite clusters
in each layer which are connected by the bridge nodes. Finally, we applied ourmodel on realflight networks and
obtained that a targeted fraction of bridge nodes reduces the time tb, and as r increases, the structure of the
network becomes less relevant to predict the value of tb.

Themodel and results presented in this paper could be generalized. For example, ourmodel could be
extended tomore layers and other epidemicmodels like the susceptible-infected-susceptiblemodel, in order to
evaluate the role of the bridge nodes inmore complex structures and different dynamic processes. In addition,
different effective controlmethods could be studiedwith the goal of increasing the time tb in real-world
networks.
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AppendixA. R versus r

Infigure A1we show the relation betweenR and r for different number of external links, i.e k r cextá ñ = (see
section 2).

Appendix B. Scaling of R rd d forT Tc

In this sectionwewill obtain the scaling relation between dR/dr and the distance to criticalityT−Tc in the limit
of r→0, i.e. R r T Td d c~ - g-( ) where γ is the critical exponent of themean size offinite clusters.We apply
our equations for homogeneous networks and SF networks with 3<λ<4.Note that in our calculation the
external connectivity distribution always follows a Poisson distributionwith k r1extá ñ ~ .

For any value of r, the fraction of nodes that belong to theGCR is given by

R r G Tf rG Tf G Tf1 1 1 1 1 , B.1i i i i b b
0 0 0= - - - + - -¥ ¥ ¥[( ) ( ) ( ) ( )] ( )

where f i
¥ and f b

¥ satisfy the following equations,

f r G Tf rG Tf G Tf1 1 1 1 1 , B.2i i i i i b b
1 1 0= - - - + - -¥ ¥ ¥ ¥[( ) ( ) ( ) ( )] ( )

f G Tf G Tf1 1 1 , B.3b b b i i
1 0= - - -¥ ¥ ¥( ) ( ) ( )

In the limit of r→0, kextá ñ  ¥ and since G x G x k xexp 1b i
0 1 ext= = á ñ -( ) ( ) ( ( )), then for any value of

x<1, it is straightforward that G x G x 0b i
0 1= ( ) ( ) . Therefore in this limit the fraction of nodes in theGC can

be approximated by,
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R r G Tf1 1 1 , B.4i i
0= - - - ¥[( ) ( )] ( )

with

f r G Tf1 1 1 . B.5i i i
1= - - -¥ ¥[( ) ( )] ( )

Note that equation (B.5) is the same as in a single networkwith a perturbation r. Additionally in this limit,
equation (B.3) reduces to f 1b =¥ , i.e. the probability that an external link leads to a bridge node that belong to
theGC is equal to one because these nodes have an increasing number of external links ( kextá ñ  ¥). Since
these equations depend only in variables related to the internal links, for simplicity wewill omit the index i.

Taking the derivative of the equations (B.4) and(B.5)with respect to r, we obtain for r→0:
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In the following, wewill apply these equations for homogeneous and SF networkswith 3<λ<4.

B.1.Homogeneous networks
For the case of homogeneous networks, i.e. withfinite third-ordermoment, we can expand the self-consistent
equation (B.5) around f 0=¥ up to the quadratic term forTnearTc, obtaining

f
G

T G
T T

2 1

1
. B.81

2
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-¥
( )
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( ) ( )

Similarly, expanding G Tf11¢ - ¥( ) and G Tf11 - ¥( ) in equation (B.7), we obtain
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Then, using equation (B.8), the derivative of f∞with respect to rwhen r→0 behaves as

f

r G T T

d

d
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1
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r 0 1 c

»
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¥
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Figure A1. Fraction of recovered nodes,R, as a function of r forT=Tc and different values of k rextá ñ : 1 (black), 0.5 (red) and 0.25
(blue) for ER networkswith k 4á ñ = (panels (a) and (c)) and for SF networks withλ=3.5 (panel (b) and (d)). The solid lines are
obtained from the theoretical equations and the symbols are obtained from the simulations in networks withN=105 and 100
realizations. Panels (c) and (d) are in log–log scale, and the dashed lines is a power-law functionwith an exponent equal to 1/δ.
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Finally, expanding G Tf10¢ - ¥( ) in equation (B.6) around f 0=¥ up to the linear term andusing that

T G G1 1c 0 0= ¢ ( ) ( ), leads to
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and replacing equation (B.10) in the last expression, we obtain
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Since in the last equation, asT→Tc, thefirst term isfinite while the second one diverges, we disregard thefirst
term and the derivative ofRwith r, is given by,
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i.e. γ=1 for homogeneous networks.

B.2. SF networkswith 3 4l< <
For the case of SF networks with 3<λ<4 and using Tauberian theorems [43], the expansion of equation (B.5)
around f 0=¥ is

f G Tf c f1 1 1 , B.141 1
2= - - ¢ + l

¥ ¥ ¥
-( ( ) ) ( )

where c1 is a constant. This expression leads to

f T T . B.15c
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Similarly, expanding G Tf11 - ¥( ) and G Tf11 - ¥( ) in equation (B.7), we obtain
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where c1 and c2 are constants. Using thatT G1 1c 1= ¢( ), and the equation (B.15), the last equation can be
approximated by,
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where c3, c4, c5 are constants.
Sinceλ>3 then forT→Tc, in the numerator of the last equation only the first term remains, and hence
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On the other hand, applying Tauberian theorems [43], and inserting equations (B.15) and(B.18) into
equation (B.6), leads to the following relation
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In the limitT→Tc, thefirst term isfinite while the second one diverges, hence the first term can be disregarded.
In turn, the numerator of the second term is alsofinite, whichfinally leads to
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i.e. γ=1.
Infigure B1we showdR/dr as a function of T Tc-∣ ∣ for an ERnetwork and a SF networkwithλ=3.5, in

whichwe can observe that the exponent obtained is consistent with the predicted value.

AppendixC.Mean time tb to reach a bridge node

In order to compute the time it takes the disease to reach a bridge node, we describe the disease spreadingwith
tr=1 as a branching process.
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Let us consider an infected individual in generation n, then the generating function of the probability to not
reach a bridge node in the following generation through a link is given by

G x T T r G x1 1 , C.1b1 1º - + -( ) ( ) ( ) ( )

whereT is the transmissibility andG1(x) is the generating functionof the excess degreedistribution. Similarly the gen-
erating functionof theprobability tonot reachabridgenode in the followingn-generations througha link is givenby

g x G G G x , C.2n b b b

n

1 1 1º   ( ) ( ( ( ))) ( )
( )

for n�1, and g0(x)=x for n=0.On the other hand, the generating function of the probability to not reach a
bridge node in the following n-generations from the index case isG0(gn(x)), whereG0(x) is the generating
function of the degree distribution. Therefore, the probability that in generation n+1 the disease reaches a
bridge node is,

P t n r G g G g Tr

r G g G g

1 1 1 1

1 1 1 , C.3
n n

n n

0 0

0 0 1

= + = - - -
= - - +
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( )[ ( ( )) ( ( ))] ( )

whereG0(gn(1)) is the probability that the disease reaches the generation n+1, i.e. is the probability that there is
an infected node in generation n+1, andG0(gn(1−Tr)) is the probability to not reach a bridge node in
generation n+1. For n=0we setP(t=0)=r.

Since, we only consider those realizations inwhich one of the infected node is a bridge, we normalize the
probability P(t=n):

Q t n
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Finally, the average time tb to reach a bridge node is given by

t nQ t n . C.5b
n 0
å= =
=

¥

( ) ( )

C.1. Scaling relation between tb and r atT Tc=
In the followingwewill study the asymptotic behavior ofP(t=n) for large values of n and r=1 atT=Tc.

Since gn is the recursive iteration of the functionG1b(x), the value of gn tends to the solution of

x G x , C.6b1= ( ) ( )

as in afixed point iteration process.We denote as g∞ the solution of this equation. Therefore, for large values of n
we can approximate equation (C.3) to

P t n G g g g1 . C.7n n0 1= + » ¢ -¥ +( ) ( )( ) ( )

Since gn=G1b(gn−1), gn+1=G1b(gn) and g g gn n 1» »+ ¥we can approximate the last equation to

P t n G g G g g g1 . C.8b n n0 1 1= + » ¢ ¢ -¥ ¥ -( ) ( ) ( )( ) ( )

If we use the approximation g g G g g gn n b n n1 1 2 1- » ¢ -- ¥ - -( )( ) then equation (C.8), can be rewritten as

P t n G g G g G g g g1 , C.9b b n n0 1 1 2 1= + » ¢ ¢ ¢ -¥ ¥ ¥ - -( ) ( ) ( ) ( )( ) ( )

Figure B1. dR/dr at a function of T Tc-∣ ∣ for an ERnetworkwith k 4á ñ = (panel (a)) and SF networkwithλ=3.5 and kmin=2
(panel (b)). The solid lines are obtained from equations (B.6) and (B.7) and the dashed line is a power lawfit.
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and using equation (C.8) at t=n−1we obtain that

P t n G g P t n1 . C.10b1= + » ¢ =¥( ) ( ) ( ) ( )

This relation shows that for large values of n, the distribution P(t) corresponds to an exponential distribution
with amean time value of t G g1 lnb 1b= ¢ ¥( ( ( ))). Since for r→0 andT= Tc, we have that g 1¥ and
G g 1b1¢ ¥( ) , then G g G gln 1b b1 1¢ » - ¢¥ ¥( ( )) ( ), i.e.

t
G g

1

1
. C.11

b
b

1

»
- ¢ ¥( )

( )

In the followingwewill explore the relation between G gb1¢ ¥( ) and r for homogeneous networks, i.e. with
finite third ordermoment in the degree distribution, and SF networkswith 3<λ<4.

C.1.1. Homogeneous networks. As r→0, the solution g∞ tends to the value g 1=¥ . Therefore, expanding
equation (C.6) around this valuewe have that

g T T r G g G g

T T r r g

T r G g

1 1 1 1 1
1

2
1 1 ,

1 1 1 1

1
1

2
1 1 , C.12

c c 1 1
2

c c

c 1
2

= - + - + ¢ - +  -

= - + - + - -

+ -  -

¥ ¥ ¥

¥

¥

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )( ) ( ) ( )

( ) ( )( )

( ) ( ) ( ) ( )

inwhich the physical solution of this equation is

g
r r r r T G

T r G
1

2 1 1

1 1
. C.13

1 2
c
2

1

c 1

= +
- + - 

- ¥
( ) ( )

( ) ( )
( )

In the limit of r→0we have g∞ behaves as

g
G

r1
2

1
. C.14

1

1 2= -
¥ ( )

( )

Since g 1»¥ , we can approximate G gb1¢ ¥( ) by

G g T r G G g

T G r

1 1 1 1 ,

1 2 1 . C.15

b1 c 1 1

c 1
1 2

¢ » - ¢ +  - +

» - 
¥ ¥ ( ) ( )( ( ) ( )( ) )

( ) ( )

Therefore, according to equation (C.11) themean time tb scales with r as,

t r , C.16b
1 2~ - ( )

for homogeneous networks, i.e. with afinite third ordermoment of the degree distribution.

C.1.2. SF networks with 3 4l< < . Similarly, for SF networks with 3 4l< < and using Tauberian theorems
[43], the expansion of equation (C.11) is given by

g T T r G g g1 1 1 1 1 c 1 , C.17c c 1 0
2= - + - - ¢ - + - l

¥ ¥ ¥
-( ) ( ( )( ) ( ) ) ( )

where c0 is a constant. In the limit r→0, g 1¥ , and hence g T1 c- ¥ ( ) . Therefore, the solution of
equation (C.17) is

g c r1 , C.181
1

2» -¥ l- ( )

where c1 is a constant.
In order tofind the value of tb, we have to insert this solution in equation (C.11). Note that for SF networks

with 3<λ<4 the following relation holds,

G x G c x1 1 . C.191 1 2
3¢ » ¢ - - l-( ) ( ) ( ) ( )

Therefore, the expansion ofG1b(x) around x=1 is

G x T r G c x1 1 1 , C.20b1 c 1 2
3¢ » - ¢ - - l-( ) ( ) ( ( ) ( ) ) ( )

r c x1 1 , C.213
3» - - - l-( ) ( ) ( )

where c2 and c3 are constants. For x g= ¥, r=1 and using the equation (C.18)we obtain,

G g c r1 . C.22b1 4
3
2¢ ~ -¥

l
l
-
-( ) ( )
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Thus, themean time tb for SF networkswith 3<λ<4 is

t r . C.23b
3
2~ -l

l
-
- ( )
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