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We show that strong clustering of links in complex networks, i.e., a high probability of triadic closure,

can induce a localization-delocalization quantum phase transition (Anderson-like transition) of coherent

excitations. For example, the propagation of light wave packets between two distant nodes of an optical

network (composed of fibers and beam splitters) will be absent if the fraction of closed triangles exceeds a

certain threshold. We suggest that such an experiment is feasible with current optics technology. We

determine the corresponding phase diagram as a function of clustering coefficient and disorder for scale-

free networks of different degree distributions PðkÞ � k��. Without disorder, we observe no phase

transition for � < 4, a quantum transition for � > 4, and an additional distinct classical transition for

� > 4:5. Disorder reduces the critical clustering coefficient such that phase transitions occur for smaller �.
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Anderson localization continues to spur excitement
although half a century has passed since it was first con-
ceived in the context of electron transport through disor-
dered metals [1]. Since then new systems in which this
phenomenon occurs were suggested and verified, such as
light in strongly scattering media [2] or photonic crystals
[3], acoustical vibrations in glasses [4] or percolation
systems [5], and very recently atomic Bose-Einstein con-
densates in an aperiodic optical lattice [6]. Clearly, new
complex topologies can lead to novel physics. Therefore,
in this Letter, we investigate the role played by clustering
on the localization of waves in an experimentally realiz-
able system of an optical network.

An optical communication network may be considered
as a graph with edges representing optical fibers (or wave-
guides) and nodes representing optical units (essentially
beam splitters) that redistribute incoming waves into out-
going fibers. Although constructing such a small network
seems experimentally feasible, to the best of our knowl-
edge it has not been performed. Theoretically, the propa-
gation of electromagnetic or electronic waves in two and
three dimensional disordered systems was studied with
nodes on a lattice and bonds connecting nearest neighbors
only [7]. However, if there are almost no losses along the
edges, coherent effects are relevant for all edges including
those connecting nodes spatially far from each other. Thus
transitions in the transport properties of coherent waves on
complex networks with long-range links are relevant to
typical real-world communication networks [8,9] and can
be studied experimentally. Alternatively, one might con-
sider a network of waveguides on the nanoscale similar to
photonic lattices [3]. Specifically, we suggest that
Anderson localization should be observed upon changing
the network topology [see Figs. 1(a) and 1(b)] instead of
tweaking the disorder.

Compared with standard lattices, complex scale-free
networks have additional degrees of freedom which define

the topology of the network [10]. Focusing on the exponent
� of the power-law degree distribution PðkÞ � k�� in
scale-free networks and the clustering coefficient C (see
below for exact definitions) [11–14], we find that (i) a
localization-delocalization transition is induced by in-
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FIG. 1 (color online). Representative pictures of the giant
component of scale-free networks (� ¼ 5) (a) without and
(b) with clustering (C0 ¼ 0:6). Both networks have giant com-
ponents of similar size (N � 150); the size of the whole network
being N ¼ 150 for (a) and N ¼ 200 for (b). The logarithmically
scaled coloring presents the intensity of a mode with E � 0:2,
dark gray (red) indicating the highest, lighter colors for lower,
and black (violet) for the lowest probability. (c) Degree distri-
bution PðkÞ and (d) clustering coefficients �CðkÞ for scale-free
networks with � ¼ 4 [line in (c)], C0 ¼ 0:65 [line in
(d) according to Eq. (1)] and N ¼ 15 000 nodes, averaged over
120 configurations. Blue circles for distributions regarding the
whole network and red squares for the giant component (with
hN1i ¼ 11 906 nodes; shifted vertically by a factor of 2). The
inset shows that a linear dependence between C0 and C holds
also for the giant component if C0 � 0:9.
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creasing C even in the absence of on-node (on-site) dis-
order W for � > 4, (ii) the quantum transition point Cq

moves to lower values when W is increased (continuous
phase diagram), and (iii) the scaling exponent � is very
close to the mean-field value � ¼ 0:5 for all values of �
and Cq, as may be expected for a system with high spatial

dimension [15,16]. We have also verified that similar re-
sults hold for networks with homogeneous or Erdös-Renyi-
type degree distribution PðkÞ. For PðkÞ � k�� with � > 4:5
(approximately) there is an additional distinct classical
transition at a clustering coefficient Cc > Cq.

Theoretically, one may attempt to study quantum phase
transitions using a scattering formulation of the wave
propagation [17], or, as we have chosen here, by study-
ing the spectrum of an Anderson model [1] representing
the complex network. Usually, diagonal (on-site) or non-
diagonal (bond) disorder is introduced to obtain a local-
ization transition [18]. An alternative approach is
percolation, i.e., removing some fraction of all sites or
bonds. In this case a classical transition [19] in which the
infinite cluster breaks into finite pieces is found after the
quantum phase-transition [20]. Anderson and quantum
percolation transitions, which seems to be in the same
universality class, have been studied on different topolo-
gies including fractal structures [16], Cayley trees [21], and
complex networks [18,22]. In all cases, the transitions were
induced either by on-site disorder or by cutting bonds
(percolation) and thus changing the degree distribution of
the network [22]. Here we show that it is possible to
observe a quantum phase transition by changing the clus-
tering of the network without introducing on-site disorder
or changing the degree distribution, thus keeping the total
number of links constant. We find that clustering drives a
localization transition in a way similar to disorder. Both
clustering and strong backscattering due to disorder in-
crease the probability of closed loops and thus the proba-
bility of interference.

Many random network models have been proposed to
reproduce important aspects of real-world networks top-
ologies [10]. The properties of such networks are usually
characterized by four quantities: the degree distribution
PðkÞ (distribution of the number of neighbors k per
node), the characteristic path length ‘ between two arbi-
trary nodes (small-world property), the clustering coeffi-
cient C (probability of triadic closures), and the
assortativity (degree-degree correlations) [23].

Real-world networks exhibit a high clustering coeffi-
cient C indicating the presence of many loops on short
length scales [10]. This global measure can be achieved by
averaging over Ci ¼ 2Ti=½kiðki � 1Þ� [11], where Ti is the
number of triangles passing through vertex i and ki is its
degree. However, since a global C cannot capture specific
aspects of the network (e.g., varying degree-degree corre-
lations can lead to networks with different topology but
similar C [12]), it was suggested to average Ci within each
degree class [9], yielding �CðkÞ.

To generate scale-free networks with tunable PðkÞ �
k�� (see [22] for details) and �CðkÞ, we have applied the
algorithm suggested recently by Serrano and Boguñá [13].
Here we have chosen

�CðkÞ ¼ C0ðk� 1Þ�1; (1)

with C0 between 0 (no clustering) and 1 (maximum clus-
tering), which can be obtained without degree-degree cor-
relations [12]. In the following, we will use the parameter
C0 instead of C or �CðkÞ, since a linear relation holds for
C0 � 0:9 [see inset in Fig. 1(d); larger C0 should be treated
with care]. We obtained similar, however less reliable,
results when generating networks with the algorithm of
Volz [14] fixing C instead of �CðkÞ.
Figures 1(a) and 1(b) show two representative pictures

of scale-free networks without and with clustering.
Figures 1(c) and 1(d) compare the theoretical PðkÞ and
�CðkÞ with the quantities we obtained numerically, consid-
ering the whole network or just the giant component. One
can see good agreement in both cases. We want to stress
that we do not change PðkÞ, the total number of links, and
the number of nodes of the whole network, but only its
structure by introducing clustering. Basically we rewire the
network to achieve a higher clustering. The network can
break for high clustering because nodes with low degree
aggregate in finite clusters. We checked that the corre-
sponding critical classical coefficient Cc is clearly larger
than the critical quantum coefficient Cq if such a classical

transition takes place.
Since each triangle represents a very short loop in the

network, waves in networks with high clustering will have
a high probability to return to the same node and to
interfere. Since such interferences are the main reason
for quantum localization, one may expect that strong clus-
tering will induce localization. To study wave localization
we consider the Anderson Hamiltonian [1],

H ¼ X

i

�ia
y
i ai �

X

ði;jÞ
tj;ia

y
j ai; (2)

where the first part represents the disordered on-site (node)
potential (homogeneous distribution �W=2< �i <W=2)
and the second part describes the transfer between each
pair of nodes (i; j). For optical waves, one has ti;j ¼
expði’i;jÞ for connected nodes (’i;j is the optical phase

accumulated along the bond) and ti;j ¼ 0 for disconnected

nodes. For simplicity, we restrict ti;j to random values �1;

the Hamiltonian thus remains in the orthogonal symmetry
class. The extension to unitary symmetry is straightfor-
ward. In this scenario, the on-site disorder W results from
variations in the optical units (beam splitters) located at the
nodes.
By exact diagonalization, we have calculated the eigen-

values of the Hamiltonian (2) on the largest cluster for
scale-free networks with various � and C0. Figures 1(a)
and 1(b) show the intensities corresponding to two eigen-
modes. Then we applied level statistics [24] to determine
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the localization behavior of the modes and to extract the
quantum phase-transition points. In disordered systems
with extended eigenfunctions the energy spacing distribu-
tion PðsÞ of consecutive eigenvalues (levels) Ei corre-
sponds to the random-matrix theory result, well approxi-
mated by the Wigner surmise, PWðsÞ ¼ ð�=2Þs�
expð��s2=4Þ. For localized states the level spacings are
described by the Poisson distribution, PPðsÞ ¼ expð�sÞ.
For finite systems PðsÞ is in between PWðsÞ and PPðsÞ.
However, it approaches one of themwith increasing system
size, remaining system-size independent only at the tran-
sition point. To determine this point for model parameters
� (exponent of degree distribution), C0 [Eq. (1)] and W
[below Eq. (2)], we study the system-size (N) dependence
of

� ¼
R1
2 PðsÞds� R1

2 PWðsÞdsR1
2 PPðsÞds�

R1
2 PWðsÞds ; (3)

where � ! 0 with N ! 1 for extended states and � ! 1
for localized states [25]. From finite-size scaling arguments
[25] we expect that � around C0;q will not only depend on

C0 but also on the diameter of the network L,

�ðC0;W;LÞ ¼ �ðC0;q;Wc;LÞ
þ ½R1jC0 �C0;qjþR2jW�Wcj�L1=�; (4)

where R1 and R2 are constants and L / lnðaðC0ÞNÞ [26].
This relation enables us to obtain the critical clustering
coefficient C0;q, the critical disorder Wc, and the critical

exponent �. Using Eq. (4) we have determined C0;q andWc

for scale-free networks with various �. We also checked
that equivalent results are obtained if other integral mea-
sures of PðsÞ are studied, e.g., I0 ¼ 1

2

R1
0 s2PðsÞds.

Considering large scale-free networks without disorder
(W ¼ 0) but varied C0, Fig. 2 shows PðsÞ versus s as well
as the two limiting cases PWðsÞ and PPðsÞ. One can clearly
see that the shape of PðsÞ changes from Wigner to Poisson
with increasing C0. We thus observe an Anderson-like
transition although there are no disorderW and no changes
in the degree distribution PðkÞ. The inset of Fig. 2 shows �
for five system sizes versus the clustering strength C0. One
can observe the quantum phase transition at the critical
value C0;q � 0:69 by the crossing of the five curves, in-

dicating a system-size independent critical value of �c �
0:76.
Figure 3(a) shows the phase diagram for the transitions

from localized (upper right) to extended (lower left) optical
modes. The horizontal axis (C0 ¼ 0) corresponds to the
case with no clustering studied before by Sade et al. [18],
where the critical disorderWc depends on �. The main new
finding of the present study regards the transitions on the
vertical axis. Without disorder, the transition to the local-
ized phase occurs at a critical clustering C0;q that depend

on �, i.e., the degree distribution. While even the strongest
clustering C0 ¼ 1 cannot achieve such a transition if
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FIG. 2 (color online). Level spacing distribution PðsÞ for opti-
cal modes on scale-free networks with � ¼ 5, N ¼ 12 500 and
no disorder, W ¼ 0. A clear transition from Wigner (dashed red
curve) to Poisson (dash-dotted blue curve) behavior is observed
as a function of the clustering coefficient prefactor that is
increased from C0 ¼ 0:0 (continuous red curve, next to the
dashed curve) to C0 ¼ 0:90 (continuous blue curve, next to the
dash-dotted curve). Inset: Localization parameter � [see Eq. (3)]
versus C0 for networks with (from top to bottom on the left) N ¼
5000 (red), N ¼ 7500 (light green), N ¼ 10 000 (green), N ¼
12 500 (blue), and N ¼ 15 000 (purple). A transition from ex-
tended modes for small C0 to localized modes for large C0 is
observed at C0;q � 0:69. The results are based on eigenvalues

around jEj ¼ 0:2 and 0.5.
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FIG. 3 (color online). (a) Phase diagram for transitions from
localized optical modes (upper right) to extended modes in parts
of the spectrum (lower left) for different degree distribution
exponents �, � ¼ 4 (blue diamonds), 4.25 (magenta circles),
and 5 (red squares). Data for C0 > 0:9 are not reliable for
network generation reasons, and the error bar for the point at
C0 ¼ 1 is about 0.1. (b) Exponent � for different � and C0;q. The

values are, within the error bars (not shown), consistent with the
mean-field prediction � ¼ 0:5. (c) Quantum transitions without
disorder (blue circles) and classical transitions (red squares) as a
function of the degree exponent �. In the regime 4< �< 4:5
only quantum transitions occur. For W > 0 the curves move
downwards making quantum transitions possible for � < 4
(green circles for W ¼ 5 and magenta circles for W ¼ 10).
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� < 4, values of C0;q < 1 are observed for � > 4. The case

� ¼ 4 seems to be limiting: this is the broadest degree
distribution which allows a quantum phase transition upon
increasing clustering.

If variations of C0 and W are considered, the full phase
diagram can be explored. Evidently, smaller values of C0

are sufficient for quantum phase transitions if W > 0. We
obtained similar phase diagrams for networks with homo-
geneous or Erdös-Renyi-type degree distributions (not
shown). Within our error bars the critical exponent �
corresponds to the mean-field value � ¼ 0:5 for infinite
dimensions [see Fig. 3(b)] as expected from the Anderson
transition [15].

To make sure that the quantum transition is induced by
clustering and not by a classical phase transition we de-
termine the corresponding classical critical clustering co-
efficient C0;c. We find no indications of a classical

transition for � < 4:5; i.e., the giant component is not
broken. For � ¼ 5 we find C0;c � 0:85, significantly larger
than C0;q � 0:69 [see insets of Fig. 2 and Fig. 3(c)]. We

thus conclude that the quantum transition for W ¼ 0 is
clearly different from the classical one in two ways:
(i) there is no classical transition between 4< �< 4:5
although a quantum transition is clearly seen, and (ii) for
� > 4:5, the quantum transition occurs for lower C0 values
than the classical one. This leaves an intermediate regime
(C0;q < C0 <C0;c � 1) in which all modes are localized

although there is a spanning giant cluster.
In summary, we have shown that quantum phase tran-

sitions of wavelike modes (similar to the Anderson tran-
sition and to the quantum percolation transition) can be
obtained in a complex network without introducing on-site
disorder or bond disorder or tampering with the degree
distribution (i.e., the number and distribution of links). One
only needs to change the clustering coefficient of the net-
work, which corresponds to a rewiring procedure.

We conclude that clustering represents a new degree of
freedom that can be used to induce and study phase tran-
sitions in complex networks. Comparing systems with
different clustering properties might enable one to find
the most relevant cause of quantum localization. We pro-
pose that the phenomenon should be observable experi-
mentally and relevant in complex coherent optical
networks made of fibers and beam splitters. Such experi-
ments will directly probe the influence of complex network
topology on the Anderson localization of light [2,3].
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