
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/326483261

Correlation and scaling behaviors of fine particulate matter (PM 2.5 )

concentration in China

Article  in  EPL (Europhysics Letters) · July 2018

DOI: 10.1209/0295-5075/122/58003

CITATION

1
READS

90

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Network Reliability View project

Semantic networks and creativity View project

Yongwen Zhang

Bar Ilan University

11 PUBLICATIONS   7 CITATIONS   

SEE PROFILE

Jingfang Fan

Potsdam Institute for Climate Impact Research

34 PUBLICATIONS   108 CITATIONS   

SEE PROFILE

Shlomo Havlin

Bar Ilan University

987 PUBLICATIONS   62,559 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Yongwen Zhang on 27 August 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/326483261_Correlation_and_scaling_behaviors_of_fine_particulate_matter_PM_25_concentration_in_China?enrichId=rgreq-b620d2dd3badb2665ae722824560306d-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ4MzI2MTtBUzo2NjQxNjcwMDI0MzU1OTVAMTUzNTM2MTE2MTIyNQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/326483261_Correlation_and_scaling_behaviors_of_fine_particulate_matter_PM_25_concentration_in_China?enrichId=rgreq-b620d2dd3badb2665ae722824560306d-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ4MzI2MTtBUzo2NjQxNjcwMDI0MzU1OTVAMTUzNTM2MTE2MTIyNQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Network-Reliability-4?enrichId=rgreq-b620d2dd3badb2665ae722824560306d-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ4MzI2MTtBUzo2NjQxNjcwMDI0MzU1OTVAMTUzNTM2MTE2MTIyNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Semantic-networks-and-creativity?enrichId=rgreq-b620d2dd3badb2665ae722824560306d-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ4MzI2MTtBUzo2NjQxNjcwMDI0MzU1OTVAMTUzNTM2MTE2MTIyNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b620d2dd3badb2665ae722824560306d-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ4MzI2MTtBUzo2NjQxNjcwMDI0MzU1OTVAMTUzNTM2MTE2MTIyNQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yongwen_Zhang2?enrichId=rgreq-b620d2dd3badb2665ae722824560306d-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ4MzI2MTtBUzo2NjQxNjcwMDI0MzU1OTVAMTUzNTM2MTE2MTIyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yongwen_Zhang2?enrichId=rgreq-b620d2dd3badb2665ae722824560306d-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ4MzI2MTtBUzo2NjQxNjcwMDI0MzU1OTVAMTUzNTM2MTE2MTIyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Bar_Ilan_University?enrichId=rgreq-b620d2dd3badb2665ae722824560306d-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ4MzI2MTtBUzo2NjQxNjcwMDI0MzU1OTVAMTUzNTM2MTE2MTIyNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yongwen_Zhang2?enrichId=rgreq-b620d2dd3badb2665ae722824560306d-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ4MzI2MTtBUzo2NjQxNjcwMDI0MzU1OTVAMTUzNTM2MTE2MTIyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jingfang_Fan2?enrichId=rgreq-b620d2dd3badb2665ae722824560306d-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ4MzI2MTtBUzo2NjQxNjcwMDI0MzU1OTVAMTUzNTM2MTE2MTIyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jingfang_Fan2?enrichId=rgreq-b620d2dd3badb2665ae722824560306d-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ4MzI2MTtBUzo2NjQxNjcwMDI0MzU1OTVAMTUzNTM2MTE2MTIyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Potsdam_Institute_for_Climate_Impact_Research?enrichId=rgreq-b620d2dd3badb2665ae722824560306d-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ4MzI2MTtBUzo2NjQxNjcwMDI0MzU1OTVAMTUzNTM2MTE2MTIyNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jingfang_Fan2?enrichId=rgreq-b620d2dd3badb2665ae722824560306d-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ4MzI2MTtBUzo2NjQxNjcwMDI0MzU1OTVAMTUzNTM2MTE2MTIyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shlomo_Havlin?enrichId=rgreq-b620d2dd3badb2665ae722824560306d-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ4MzI2MTtBUzo2NjQxNjcwMDI0MzU1OTVAMTUzNTM2MTE2MTIyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shlomo_Havlin?enrichId=rgreq-b620d2dd3badb2665ae722824560306d-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ4MzI2MTtBUzo2NjQxNjcwMDI0MzU1OTVAMTUzNTM2MTE2MTIyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Bar_Ilan_University?enrichId=rgreq-b620d2dd3badb2665ae722824560306d-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ4MzI2MTtBUzo2NjQxNjcwMDI0MzU1OTVAMTUzNTM2MTE2MTIyNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shlomo_Havlin?enrichId=rgreq-b620d2dd3badb2665ae722824560306d-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ4MzI2MTtBUzo2NjQxNjcwMDI0MzU1OTVAMTUzNTM2MTE2MTIyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yongwen_Zhang2?enrichId=rgreq-b620d2dd3badb2665ae722824560306d-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ4MzI2MTtBUzo2NjQxNjcwMDI0MzU1OTVAMTUzNTM2MTE2MTIyNQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


                          

LETTER

Correlation and scaling behaviors of fine
particulate matter (PM2.5) concentration in China

To cite this article: Yongwen Zhang et al 2018 EPL 122 58003

 

View the article online for updates and enhancements.

Related content
Environmental effects of the recent
emission changes in China: implications
for particulate matter pollution and soil
acidification
Bin Zhao, Shuxiao Wang, Xinyi Dong et al.

-

Chinese coastal seas are facing heavy
atmospheric nitrogen deposition
X S Luo, A H Tang, K Shi et al.

-

Interannual variability of summertime
aerosol optical depth over East Asia
during 2000–2011: a potential influence
from El Niño Southern Oscillation
Yikun Liu, Junfeng Liu and Shu Tao

-

This content was downloaded from IP address 132.70.66.11 on 23/07/2018 at 08:35

https://doi.org/10.1209/0295-5075/122/58003
http://iopscience.iop.org/article/10.1088/1748-9326/8/2/024031
http://iopscience.iop.org/article/10.1088/1748-9326/8/2/024031
http://iopscience.iop.org/article/10.1088/1748-9326/8/2/024031
http://iopscience.iop.org/article/10.1088/1748-9326/8/2/024031
http://iopscience.iop.org/article/10.1088/1748-9326/9/9/095007
http://iopscience.iop.org/article/10.1088/1748-9326/9/9/095007
http://iopscience.iop.org/article/10.1088/1748-9326/8/4/044034
http://iopscience.iop.org/article/10.1088/1748-9326/8/4/044034
http://iopscience.iop.org/article/10.1088/1748-9326/8/4/044034
http://iopscience.iop.org/article/10.1088/1748-9326/8/4/044034


June 2018

EPL, 122 (2018) 58003 www.epljournal.org

doi: 10.1209/0295-5075/122/58003

Correlation and scaling behaviors of fine particulate matter
(PM2.5) concentration in China

Yongwen Zhang
1,2

, Dean Chen
3
, Jingfang Fan

4
, Shlomo Havlin

4 and Xiaosong Chen
2,5(a)

1 Data Science Research Center, Faculty of Science, Kunming University of Science and Technology
Kunming 650500, Yunnan, China
2 CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences
P. O. Box 2735, Beijing 100190, China
3 Department of Physics, University of Helsinki - P.O. Box 48, 00014 Helsinki, Finland
4 Department of Physics, Bar-Ilan University - Ramat-Gan 52900, Israel
5 School of Physical Sciences, University of Chinese Academy of Sciences - Beijing 100049, China

received 11 March 2018; accepted in final form 10 June 2018
published online 18 July 2018

PACS 89.75.-k – Complex systems
PACS 89.60.-k – Environmental studies
PACS 05.45.-a – Nonlinear dynamics and chaos

Abstract – Air pollution has become a major issue and caused widespread environmental and
health problems. Aerosols or particulate matters are an important component of the atmosphere
and can transport under complex meteorological conditions. Based on the data of PM2.5 ob-
servations, we develop a network approach to study and quantify their spreading and diffusion
patterns. We calculate cross-correlation functions of the time lag between sites within different
seasons. The probability distribution of correlation changes with season. It is found that the
probability distributions in four seasons can be scaled into one scaling function with averages and
standard deviations of correlation. This seasonal scaling behavior indicates that there is the same
mechanism behind correlations of PM2.5 concentration in different seasons. Further, the weighted
degrees reveal the strongest correlations of PM2.5 concentration in winter and in the North China
Plain for the positive correlation pattern that is mainly caused by the transport of PM2.5. These
directional degrees show net influences of PM2.5 along Gobi and inner Mongolia, the North China
Plain, Central China, and Yangtze River Delta. The negative correlation pattern could be related
to the large-scale atmospheric waves.

Copyright c© EPLA, 2018

Introduction. – Aerosols or particulate matters,
which control the process from low visibility events to pre-
cipitation, are important components of the atmosphere.
They play a critical role in the global climate pattern and
public health. Chen et al. [1] have reported the impact on
life expectancy of sustained exposure to air pollution from
China’s Huai River policy. Due to anthropogenic emis-
sions, the concentration of particulate matters is growing
sharply. In the past few years, China has witnessed a rapid
growth both in industry and in cities population. As a re-
sult, air pollution, especially the pollution caused by the
high fine particulate matter (i.e., with aerodynamic diam-
eters not larger than 2.5μm, or PM2.5) concentration, has
become a serious issue [2].

(a)E-mail: chenxs@itp.ac.cn

Most previous studies on PM2.5 concentrated on obser-
vation in one site. Winter and summer PM2.5 chemical
compositions in 14 cities of China have been analysed by
Cao et al. [3]. The publication of hourly data since 2013
provided the possibility to study the spatial distribution
and seasonal variation of PM2.5 in China [4]. Using the
monitoring data in the North China Plain and the Yangtze
River Delta, Hu et al. [5] found a strong temporal correla-
tion between cities within 250 km. For 81 cities in China,
Gao et al. [6] studied air pollution of city clusters from
June 2004 to June 2007. The relation between the air
quality over Beijing and its surroundings and circulation
patterns was studied by Zhang et al. [7]. The spatiotem-
poral variations of PM2.5 and PM10 concentrations of 31
Chinese cities from March 2013 to March 2014 were re-
lated to SO2, NO2, CO and O3 [8]. At a suburban site
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between Beijing and Tianjin, the correlation of pollutants
with meteorological conditions was discussed [9].

The studies [5,6] have shown that PM2.5 concentrations
in different cities are not localized and related to each
other. It is of great interest to investigate how far the
PM2.5 concentrations in different cities of China are cor-
related. Using the hourly data of monitoring sites over
China, the spatial correlations of PM2.5 concentrations
in 2015 have been studied using the principal component
analysis [10].

In the last decade, networks have emerged as an im-
portant tool in studies of complex systems and has been
applied to a wide variety of disciplines [11–13]. Re-
cently, complex network theory has been used to study
climate systems [14–21]. For a climate system, geograph-
ical locations or grid points are regarded as nodes of
network and the links between them are defined by a
cross-correlation function [18,21] or other ways like event
synchronization [22,23], mutual information [24,25] and
causalities [26].

In this letter, we study the global properties of PM2.5

concentrations in China from the aspect of complex net-
works. The nodes of PM2.5 concentration network can be
defined from the monitoring stations. Using PM2.5 con-
centration data, we can calculate the correlation between
nodes and define their links. Our work is organized as
follows. In the next section, we describe the data and in-
troduce the methodology. The results are presented and
discussed in the third section. Finally, a short summary
is given.

Data and methodology. –

Data. The Ministry of Environmental Protection of
China has been publishing the air quality index since 2013
and has provided data for us to study atmospheric pol-
lution. We use the hourly PM2.5 concentration data of
754 monitoring sites over China from Dec. 2014 to Nov.
2015 (http://113.108.142.147:20035/emcpublish/).
In pre-processing, we transform 754 monitoring stations
into 163 sites with an area 1◦ × 1◦. The concentration
of a site is defined by the average of monitoring stations
inside this site. Since the strong seasonal dependence of
PM2.5 concentration, we divide the data into four groups
corresponding to winter (Dec., Jan., Feb.), spring (Mar.,
Apr., May), summer (Jun., Jul., Aug.) and autumn (Sep.,
Oct., Nov.).

Methodology. During a time period T , the PM2.5 con-
centration of site i is represented by a series Xi(t). With
respect to its average 〈Xi〉 = 1

T

∑T
t=1 Xi(t), there is a

fluctuation series δXi(t) = Xi(t) − 〈Xi〉. To study the
correlation of PM2.5 concentration between sites i and j,
we calculate the cross-correlation function [18]

Ĉij(τ) =
〈δXi(t) · δXj(t + τ)〉√

〈[δXi(t)]2〉 ·
√
〈[δXj(t + τ)]2〉

, (1)

where −τmax ≤ τ ≤ τmax is the time lag. On the basis
of time-reversal symmetry, there is a relation Ĉij(−τ) =
Ĉji(τ). The cross-correlation in the interval [−τmax, τmax]
can be calculated by Ĉij(τ ≥ 0) and Ĉji(τ ≥ 0). We
identify the largest absolute value of Ĉij(τ) and denote
the corresponding time lag as τ∗

ij . The correlation between
sites i and j is defined as Cij ≡ Ĉij(τ∗). If τ∗

ij �= 0,
the correlation between sites i and j is directional. The
direction of correlation is from i to j when τ∗

ij > 0 and
from j to i when τ∗

ij < 0.
For given N nodes, there are (N − 1)N/2 correlations

and they can be described by a probability distribution
function (PDF) ρ(C).

For the definition of a network, a threshold Δ of correla-
tion is introduced to exclude noise. The adjacency matrix
of the network is defined with the threshold as

Aij =
{

1 − δij , |Cij | > Δ,
0, |Cij | ≤ Δ,

(2)

where Kronecker’s delta δij = 0 for i �= j and δij = 1 for
i = j so that self-loops are excluded.

The importance of site i in the network is characterized
usually by its degree kC

i =
∑N

j=1 Aij [11]. More informa-
tion can be taken into account with a weighted degree

k̄C
i =

N∑
j=1

Aij |Cij |. (3)

The direction from sites i to j is described by a unit
vector �eij = 1

d (δφ, δθ) with d =
√

δφ2 + δθ2, where δφ
and δθ are the longitude and latitude differences of i and
j, respectively. We can further introduce a directional
degree as

�kC
i =

N∑
j=1,τ∗

ij>0

Aij |Cij | �eij +
N∑

j=1,τ∗
ij<0

Aij |Cij | (−�eij) (4)

to quantify the PM2.5 concentration directional influences
of site i.

Alternatively, we can determine network links accord-
ing to

Gij =
Cij − mean(Ĉij(τ))

std(Ĉij(τ))
, (5)

where “mean” and “std” represent the mean and standard
deviation of the cross-correlation function [19,27,28]. Gij

characterizes actually the significance of the correlation
Cij among Ĉij(τ) of different time lag τ .

The adjacency matrix of the network is now defined as

Bij =
{

1 − δij , |Gij | > Θ,
0, |Gij | ≤ Θ (6)

with the threshold Θ of G. With Cij replaced by Gij in
eq. (3) and eq. (4), we can obtain the weighted degree k̄G

i

and the directional degree �kG
i of G.

58003-p2
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Fig. 1: (Color online) Distribution of mean PM2.5 concentra-
tion over China from Dec. 2014 to Nov. 2015 for winter (Dec.-
Jan.-Feb., or DJF), spring (Mar.-Apr.-May, or MAM), sum-
mer (Jun.-Jul.-Aug., or JJA) and autumn (Sep.-Oct.-Nov., or
SON) [4]. The tiny figure at the bottom-right corner is the
Nine-Dash Line of China.

Results. – We calculate firstly the mean PM2.5 con-
centration 〈Xi〉 = 1

T

∑T
t=1 Xi(t) of sites i = 1, 2, . . . , 163

and show them in fig. 1 for the four seasons. The overall
average

X̄ =
1
N

N∑
i=1

〈Xi〉 (7)

is 75.3μg/m3 in winter, 48.2μg/m3 in spring, 36.5μg/m3

in summer and 46.9μg/m3 in autumn. In winter, 45 per-
cent of sites has mean PM2.5 concentration above
75μg/m3 and the percentage of the sites above 35μg/m3

is 95%. The maximum mean PM2.5 concentration in win-
ter is related to the enhanced anthropogenic emissions
from fossil fuel combustion, biomass burning and unfavor-
able meteorological conditions for pollution dispersion [4].
In spring, 8 percent of sites have mean concentrations
above 75μg/m3 and 77 percent are above 35μg/m3. The
lowest mean PM2.5 concentration is reached in summer.
Only 4 percent of sites have mean concentrations above
75μg/m3 and 47 percent are above 35μg/m3. In autumn,
the percentage of sites above 35 μg/m3 and 75μg/m3

reaches 78% and 7%, respectively.
The cross-correlation functions Ĉij(τ) between N sites

were calculated according to eq. (1) and with τmax = 10
days. From Ĉij(τ), we can obtain the correlation Cij be-
tween sites i and j. The PDF ρ(C) of correlation is pre-
sented in fig. 2 for the four seasons. It can be seen that
ρ(C) is separated into positive and negative parts (corre-
sponding to C > 0 and C < 0, respectively).

The proportions of positive and negative correlations
can be calculated by

λp =
∫ 1

0

ρ(C)dC, (8)

λn =
∫ 0

−1

ρ(C)dC. (9)

0

1

2

3

4

−0.5 0.0 0.5 1.0
C

ρ(
C

)

DJF
MAM
JJA
SON

Fig. 2: (Color online) Probability distribution function of cor-
relation between sites in the four seasons from Dec. 2014 to
Nov. 2015.
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Fig. 3: (Color online) Probability distribution functions ρp(C)
in (a) and ρn(C) in (b). The variation of f(W ) as a function
of the scaling quantity W for (c) positive and (d) negative
correlations.

For positive correlations, we get λp = 95% in winter, 78%
in spring, 55% in summer and 84% in autumn. Corre-
spondingly, the negative correlations have the proportion
λn = 1−λp = 5%, 22%, 45% and 16% in the four seasons.

Further, we introduce the probability distribution
functions

ρp(C) =
1
λp

ρ(C) (10)

for C > 0 and
ρn(C) =

1
λn

ρ(C) (11)

for C < 0. They are presented in fig. 3(a) and (b) and de-
pend on the season. The averages 〈Cp〉, 〈Cn〉 and standard
deviations σp, σn of positive and negative correlations can
be calculated with ρp(C) and ρn(C). Their results are
summarized in table 1 for different seasons. λp and 〈Cp〉
have their maximum in winter and minimum in summer,
which is in accord with the overall average of mean PM2.5

concentration.
In a system near its critical point, its physical proper-

ties follow a scaling behavior because of long-range cor-
relation [29,30]. The two-variable function of a physical
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Table 1: Proportion, average, and standard deviations of pos-
itive and negative correlations.

DJF MAM JJA SON
λp 95% 78% 55% 84%
〈Cp〉 0.406 0.361 0.356 0.397
σp 0.146 0.136 0.145 0.155
λn 5% 22% 45% 16%
〈Cn〉 −0.249 −0.255 −0.277 −0.254
σn 0.058 0.060 0.072 0.064

property can be rewritten as a function of the scaled vari-
able, which is universal. We take account of the long-
range correlation of PM2.5 concentration and search for
the scaling behavior of the probability distribution func-
tions ρp(C) and ρn(C). Using the scaling variable

Wp = [C − 〈Cp〉]/σp, (12)
Wn = [C − 〈Cn〉]/σn, (13)

we can introduce two scaling functions

fp(Wp) = σp · ρp(C) (14)

for positive correlations and

fn(Wn) = σn · ρn(C). (15)

for negative correlations. As shown in fig. 3(c) and (d),
the scaling distribution functions for positive and negative
correlations in the four seasons collapse together. This
indicates that there is the same mechanism behind the
correlation of PM2.5 concentration.

The different characters of positive and negative corre-
lations can be demonstrated further by their PDF of dis-
tance r and time lag τ∗, which are shown in fig. 4. ρp(r) of
positive correlations has its peak at the PDF of r and τ∗

which are shown in fig. 4(a) and (c). The PDF of negative
correlations are presented in fig. 4(b) for the distance and
in fig. 4(d) for the time lag. At the peaks of PDF, the
distance of negative correlations is obviously larger than
that of positive correlations. The PDF of time lag has a
maximum at τ∗ = 0 for positive correlations and τ∗ �= 0
for negative correlations. Negative correlations take on
the character of larger distance and longer time lag.

The average positive correlation C̄p(r) at fixed distance
r is shown in fig. 4(e). The decay of C̄p(r) follows a power
law in some range of r. A linear fitting process is applied in
log-log data. Since the head and tail data should not sat-
isfy the power law, we intercepted the data in the middle to
fit. The power-law slopes are −0.48± 0.009, −0.52± 0.03,
−0.59 ± 0.05 and −0.49 ± 0.01 for DJF, MAM, JJA and
SON. The power-law slope decays slowest in winter and
the fitting error is minimal. This could be related to the
transport of PM2.5 by atmospheric currents. This trend
will be weakened in summer [31]. The average negative
correlation C̄n(r) demonstrates quite different behaviors,
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Fig. 4: (Colour online) The PDF of the distance r is shown in
(a) for positive and in (b) for negative correlations. The PDF
of time lag τ∗ is shown in (c) for positive and in (d) for negative
correlations. Averages of positive and negative correlations at
distance r are plotted in (e) and (f).
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Fig. 5: (Color online) PDF of correlations from real data and
shuffle data in all seasons.

which are shown in fig. 4(f). At large distance, C̄n(r)
becomes nearly constant. We suppose that negative cor-
relations are the result of some external factors existing in
a large scale of distance, i.e., the large-scale atmospheric
waves or oscillations.

To define the correlation network, the threshold Δ of
the correlation is determined from the shuffled data ob-
tained by permuting randomly the real data in a season.
The PDF of the correlation from shuffle data is compared
with that from real data in fig. 5. We define the average
of absolute values of correlations from shuffled data as the
threshold Δ. We obtain Δ = 0.017 and the adjacency ma-
trix of the network for correlation C according to eq. (2).

The weighted degree of a site, which characterizes its
total correlation with surrounds, can be calculated using
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Fig. 6: (Color online) Distribution of weighted degree in the
network of positive correlations.
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Fig. 7: (Color online) Distribution of weighted degree in the
network of negative correlations.

eq. (3). The distribution of the weighted degree for pos-
itive correlations is shown in fig. 6. In comparison with
fig. 1 of mean PM2.5 concentration, the relevance of the
weighted degree to mean PM2.5 concentration can be
found. In the regions with larger mean PM2.5 concen-
tration, the sites there have also a larger weighted degree.
The weighted degrees are also larger in winter than in
other seasons.

For negative correlations, distributions of weighted de-
gree in different seasons are shown in fig. 7. On the con-
trary, there are the largest weighted degrees in summer
and the smallest weighted degrees in winter.

The directional degree of a site, which is calculated ac-
cording to eq. (4), characterizes its net influence to the
surroundings. We present the distribution of the direc-
tional degree for positive correlations in fig. 8. In win-
ter, there are the strongest directional degrees in the most
sites. The sites of the north-west China, such as Xinjiang,
Sichuan and Guizhou, have directional degrees in the di-
rection from west to east. The directional degrees indi-
cate net influences of PM2.5 concentration along Gobi and
Inner Mongolia plateau, the North China Plain, Central
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Fig. 8: (Color online) Distribution of directional degree in the
network of positive correlations.
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Fig. 9: (Color online) Distribution of directional degree in the
network of negative correlations.

China, and Yangtze River Delta. These phenomena can
be related to the east Asia winter monsoon [31,32], which
has been shown by numerous studies. In other seasons, the
directional degrees are smaller and less directional than in
winter. In summer especially, only the sites around Pearl
River Delta have visible directional degrees in the direction
from south to north. The distribution of the directional
degree for negative correlations is shown in fig. 9. No
significant directional influence can be found for negative
correlations.

According to eq. (5), Gij between sites i and j can be
calculated. The threshold Θ = 3.25 of G can be obtained
by averaging absolute values of the shuffled data of G. It is
found that Θ is larger than all absolute values of negative
Gij . Therefore, only a network of positive Gij can be de-
fined by the adjacency matrix B of eq. (6) . The paper [27]
has discussed the characteristics of G and C in details by
using surface air temperature data. They found that the
major differences between the two networks are caused by
the autocorrelation in the records. Two correlated high-
frequency signals will correspond to a large |G|. But for
the correlated low-frequency signals could get a large |C|
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Fig. 10: (Color online) Distribution of positive weighted degree
G in the network.
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Fig. 11: (Color online) Distribution of positive directional
weighted degree G in the network.

with small |G|. Thus, the negative part with small |G| is
mainly produced by low frequency signals. For the positive
part, the distribution of weighted degree in this G network
is shown in fig. 10. The weighted degrees in summer and
autumn are close to zero. In winter and spring, there are
large weighted degrees in the eastern part of China, es-
pecially around Beijing. The distribution of directional
degrees of the G network is shown in fig. 11. We can also
see that there are large directional degrees only in winter
and spring and in the eastern part of China, as well as
the weighted degrees. The direction of directional degrees
is from north to south. We think that the large weighted
and directional degrees of the G network are the result
of the high-frequency process of cold fronts with strong
winds which help to ventilate PM2.5 in heavily polluted
regions. Comparing with fig. 6 and fig. 8, some weighted
and directional degrees become small in the western part
of China. This implies that their degrees are not due to
strong winds, but are caused by some low-frequency fac-
tors such as transport by the difference in terrain height.
With the C and G networks, different properties of PM2.5

concentration in China have been found.

Summary. – We have studied the correlations of
PM2.5 concentrations in different sites of China. Using
the hourly PM2.5 concentration data in 754 monitoring
sites over China from Dec. 2014 to Nov. 2015, we can
calculate correlations between different sites in the four
seasons. The probability distribution functions of positive
and negative correlations depend on season. With aver-
ages and standard deviations of correlation, the different
probability distribution functions of the different seasons
can be scaled into one scaling function. This indicates
that there is maybe the same mechanism related to the
correlation of PM2.5 concentration in different seasons.
But positive and negative correlations are quite different
corresponding to different atmospheric processes.

Further, PM2.5 concentrations in different sites of
China are studied from the aspect of complex networks.
Networks of PM2.5 concentration can be defined either by
correlations or by their significances. By using weighted
and directional degrees of network, different properties of
PM2.5 concentration can be studied. In the networks of
positive correlations, the largest weighted degrees appear
in winter and in the North China Plain as far as location is
concerned. The location distribution of the weighted de-
gree and its seasonal dependence are in accord with that
of the mean PM2.5 concentration. In the networks of neg-
ative correlations, the largest weighted degrees appear in
summer. This indicates further that the origins of posi-
tive and negative correlations are different. Positive cor-
relations are mainly caused by transmission of PM2.5. In
winter, this effect is most remarkably related to the global
serious air pollution and the direction of transmission is
affected by wind in eastern China. In summer this effect is
very weak. Instead, negative correlations dominate. Neg-
ative correlations are caused probably by large-scale oscil-
lating climate conditions, i.e., the large-scale atmospheric
waves. Based on significances of positive correlation G,
we can find the correlated high-frequency signals only in
winter and spring and in the eastern part of China. The di-
rectional degrees are in the direction from north to south.
These properties of PM2.5 concentrations could be related
to cold fronts with strong winds which help to ventilate
PM2.5 in heavily polluted regions.
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