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New Exponent Characterizing the Effect of Evaporation on Imbibition Experiments
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We report imbibition experiments investigating the effect of evaporation on the interface roughness
and mean interface height. We observe a new exponent characterizing the scaling of the saturated
surface width. Further, we argue that evaporation can be usefully modeled by introducing a gradient
in the strength of the disorder, in analogy with the gradient percolation model of Sapoval et al. By
incorporating this gradient we predict a new critical exponent and a novel scaling relation for the
interface width. Both the exponent value and the form of the scaling agree with the experimental

results.
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Recently the growth of rough interfaces has witnessed
a veritable explosion of theoretical and experimental re-
sults, partly fueled by the broad interdisciplinary aspects
of the subject [1]. Much attention has focused on mea-
suring the roughness exponent «, defined by the power
law dependence upon the observation length scale £ of
the width w(¢). Simulations on discrete models pro-
vide exponents in agreement with the predictions of phe-
nomenological continuum theories [2]. However, exper-
imental studies find exponents significantly larger than
the predictions of theory—for example, for dimension
d = (1 + 1), theory predicts @ = 1/2 but experiments
show a ~ 0.63—-0.8 [3,4]. Moreover, experimental studies
frequently detect a crossover in w(¢) to a different behav-
ior above some characteristic length £«. It is currently
believed that the anomalously large values of the expo-
nent o are due to quenched pinning disorder [1,4,5], how-
ever, a completely satisfactory explanation of the exper-
imentally determined crossover length has not yet been
found.

Here we present imbibition experiments that probe the
effect on the growth process of the evaporation rate and
suspension concentration. We find that the scaling of the
interface width changes with the evaporation rate and is
characterized by a new exponent v. We also present a
model, inspired by the model of Ref. [4], that predicts
the experimentally observed value of the new exponent
characterizing the crossover effect.

The key ingredient in the model is to allow for a gradi-
ent in the density of the pinning cells, which results in the
stopping of the interface. Moreover, the detailed inves-
tigation of the scaling properties of the model provides
us with a new scaling law and new critical exponents.
Using this scaling law, we find good data collapse and
scaling exponents that agree with the values determined
analytically and numerically.

In our experiments, paper — the “disordered medium”
— is dipped into a reservoir filled with a colored suspen-
sion (coffee, ink) and the propagating wetting front is

observed. The wetting front reaches a critical height, A,
above the level of the liquid, and stops propagating when
the evaporation of the liquid induces the pinning of the
interface by the inhomogeneities of the paper. We digi-
tize the rough boundary between colored and uncolored
areas and measure a roughness exponent a ~ 0.63 [4].

Although the experiments are straightforward, their
explanation in physical terms is less so. At microscopic
length scales, paper is an extremely disordered substance,
formed by long fibers that are randomly distributed and
have random connections among one another. The wet-
ting fluid propagates in these fibers mainly due to capil-
lary forces, but the random nature of the fiber network
and the particles in the suspension provide constant ob-
stacles for the fluid flow [6]. As we depart from the wa-
ter source, evaporation is constantly decreasing the fluid
pressure, making it more and more difficult for the fluid
to overcome these microscopic “obstacles.” At the crit-
ical height, the fluid pressure balances the effect of the
pinning obstacles and the fluid stops propagating [7].

We anticipate, on physical grounds, that the smaller
the evaporation, the larger the critical height will be. To
check this intuition we repeated our experiments in en-
vironments with different rates of evaporation. As we
decreased the evaporation rate, the height reached by
the interface increased sharply. These effects can be ob-
served in the pinned interfaces obtained experimentally
[Fig. 1(a)].

While the above results can be understood from mi-
croscopic considerations, the effect of the evaporation or
of the suspension density on the scaling of the interface
roughness is nontrivial.

To understand these results, we propose a model to
describe the formation of the pinned interface in a dis-
ordered medium. In (1 + 1) dimension, we model the
pinning obstacles by blocking, in a lattice of horizontal
size L, a fraction p(h) of the cells in each horizontal row,
where h is the height from the bottom of the lattice. We
start, at t = 0, from a horizontal line of wet cells at the
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FIG. 1. Photographs of pinned interfaces in the following:
(a) Imbibition experiments with coffee and paper towels for
(i) high evaporation rate: (Vp)exp = 0.94g0, and (ii) low evap-
oration rate: (Vp)exp = 0.25go. Here go is the undetermined
multiplicative constant discussed in the text. (b) Simulations
of the model, with L = 256, for different values of the gradi-
ent: (i) Vp =278 and (ii) Vp = 27'°. Readily apparent from
these photographs is the increase in both the final heights and
widths of the interface with the decrease of the gradient.

bottom edge of the lattice. At time t + 1 we wet all un-
blocked cells which are nearest neighbors to the wet region
at time t. We also apply the rule that every cell, blocked
or not, below a new wet cell becomes wet as well (Fig.
2). The motivation for this rule is the experimental ob-
servation that the wet region is, at least at macroscopic
length scales, nearly free of dry islands.

If p(h) = po, this model generates an interface which
propagates with a constant (p-dependent) velocity if
Po < p. ~ 0.47, and becomes pinned by a directed per-
colation cluster that spans the system at po > p. [4,5].
However, although the actual disorder in the paper is not
height dependent, its effect in pinning the propagation of
the fluid is increasing with height, due to the decrease in
the fluid pressure. The most physical assumption is an
exponential decrease of the fluid pressure or, equivalently,
of the driving force. This will lead to an “effective” in-
crease in the density of pinning obstacles (7] as we depart
from the reservoir, i.e., p = p(h). Hence

p(h) —pox1— e~ h/ho, (1)
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FIG. 2. Example of the time evolution of the model for
a very small lattice (L = 5). Here, grey squares represent
blocked cells and white squares represent unblocked cells. The
numbered cells are wet. The numbers indicate at which time
step the cells first become wet. At t = 4, we wet the cells at
the left and at the right of the cell numbered 3. Also, in the
same time step we wet the cells below those two, regardless
of the fact that they were previously blocked. Similarly, at
t = 5, we are able to wet cells in the first column from wet
cells in the second column that were, at some earlier time,
blocked cells. The heavy line indicates the pinned interface.

If h <« hg, we can write
p(h) —po  hg'h o (Vp)h. (2)

Hence, in this limit, we find a constant nonzero gradient
in the density of pinning obstacles.

The presence of the gradient Vp changes the width of
the pinned interface [Fig. 1(b)] and its scaling form (Fig.
3). Our simulations show that for observation scales £
much smaller than some characteristic crossover length
£y, the saturated width behaves as w ~ £, but for £ >
£y, the width saturates at a value wg,; that depends upon
the gradient as

Wsat ™~ (Vp)-’y' (3)

This behavior can be expressed by a scaling law of the
form

w(¢, Vp) ~ £ f(¢/€x), (4a)
tx ~ (V)77 (4b)

The scaling function f(u) satisfies f(u < 1) ~ const
and f(u > 1) ~ u~%. Our simulations (see Fig. 3) for a
system of size L = 16 384 yield the exponents

Qsim = 0.63 £ 0.02,  ~sim = 0.52 + 0.02. (5)

We remark that the validity of the scaling law (4) and
the values of the exponents do not depend on the exact
form of p(h) but only on the value of Vp(h) at h. (8].
The value of o can be understood from the mapping to
directed percolation, since the conditions for a complete
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FIG. 3. The simulation results for the width w(¢, Vp) of
the pinned interface. (a) The widths for several values of
the gradient (averaged over 512 runs for each value of the
gradient). (b) The same simulation results, plotted in the
scaling form of Eq. (3), using the values of the exponents
from Eq. (4).

pinning of the interface do not change from the models of
Refs. [4,5]. In directed percolation, the size of a cluster is
characterized by a longitudinal correlation length £ and
a transverse correlation length £, that, near p., behave
as

€L~ |pc —p|™". (6)

The roughness exponent is related to the exponents of
directed percolation as [4,5]

a=vy/y|. ()

Using the known values of v; and v [9] in relation (7)
we predict a = 0.633 £+ 0.001, in agreement with our
simulation result (5).

The exponent « can be related to v, theoretically. A
point of the interface, at distance wsa; of the critical
height, is pinned by a directed percolation cluster if the
transverse size of that cluster is of order &, (p). At that
point we have p = p(hetWsat) = pe L wsat Vp. Therefore,
using Eq. (6) we find [8,10]

& ~ lpc —p|™™,

Weat ~ €1(P) ~ |Pec — (Pec £ Wsat V)| 7V,
Wgat "~ lwsat Vpl-”J. . (8)
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FIG. 4. The experimental results for the width w(¢, Vp)
of the pinned interface. (a) The widths for several values
of the gradient (in units of go). The values of the gradients
were calculated as described in the text; the error in these
values is smaller than 10%. The widths were corrected by a
multiplicative factor to make them coincide for the smallest
£. (b) The same experimental results, plotted in the scaling
form of Eq. (3), using the values of the exponents from Eq.
(10).

From Egs. (3) and (8) follows

vy=vi/(1+wvy). (9)

Since v, is known accurately [9], Eq. (9) predicts v =
0.523 +£0.001, in excellent agreement with our simulation
result (5).

Without the gradient, the interface has critical behav-
ior only if we tune p to p.. However, with the gradi-
ent the interface always stops at the critical height h..
This critical height can be calculated from the condition
p(he) = pe. Thus from (2) we obtain

he ~ (Vp)_l) (10)

i.e., the height reached by the wetting fluid is inversely
proportional to the gradient in the disorder.

The experimental data presented in Fig. 4(a) remark-
ably resemble the data obtained for the model. However,
without knowing the actual value of the gradient in the
experiments, it is not possible to check the validity of the
scaling law (4) experimentally. Nonetheless, measuring
the critical height in the experiments and using Eq. (10),
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TABLE I. Critical probability and exponents for dimension
(1+1) and (2 + 1), calculated from the simulations of the
present model.

Dim. (1+1) (2+1)
Pe 0.47 +£0.03 0.75 £ 0.03
o 0.63 & 0.02 0.43 £0.04
v 0.52 £ 0.02 0.32 +0.02
vy 1.09 +0.08 0.47 £0.04
vy 1.7+0.1 1.1+0.1

we are able to estimate Vp, the gradient in the “effective
disorder,” for the experiments, up to a multiplicative con-
stant. Using these experimentally determined values of
Vp, we rescale the results obtained for the width accord-
ing to the scaling law (4). In Fig. 4(b) we show this
rescaling, where we used

Qexp = 0.65 £ 0.05, Yexp = 0.49 % 0.05. (11)

The experimental values of both exponents agree well
with the results obtained from the simulations (Table
I) and with the theoretical predictions based in known
results from directed percolation.

The generalization of the model to d = (2 + 1) is
straightforward, and in this case the pinned interface can
be mapped to directed surfaces [4], a percolation problem
that has not been thoroughly investigated. We simulated
the model for a 512 x 512 system; the critical exponents
that give the best data collapse are

Ogim = 0.43 £ 0.04, Ygim = 0.32 £ 0.02. (12)

From these results, we calculate the exponents character-
izing the transverse and longitudinal correlation lengths
for the directed surfaces problem, obtaining

vy =047£0.04, »=11£0.1. (13)

In summary, we have performed imbibition experi-
ments to study the effect of evaporation on interfacial
phenomena. We have also developed a model that in-
corporates evaporation by introducing a gradient in the
density of pinning cells [7]. The model provides insight
into three previously unexplained aspects of imbibition
experiments: (i) The interface always stops growing, af-
ter some finite time. Because of the gradient, the wetting
interface only moves until it reaches a critical concentra-
tion of pinning cells. This gradient in pinning cells arises
from the balance between the evaporation of the fluid and
the capillary forces tending to move it along the paper.
(ii) The final height of the interface, h., increases when
the evaporation is reduced, due to the smaller effective
gradient in the pinning disorder. (iii) A new exponent
~ was found characterizing the dependence on the gradi-
ent of the saturation width and the characteristic length
£x. Good agreement was found between experimental,
analytical, and simulation values of the exponents.
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(a)
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FIG. 1. Photographs of pinned interfaces in the following:
(a) Imbibition experiments with coffee and paper towels for
(i) high evaporation rate: (Vp)exp = 0.94go, and (ii) low evap-
oration rate: (Vp)exp = 0.25gp. Here go is the undetermined
multiplicative constant discussed in the text. (b) Simulations
of the model, with L = 256, for different values of the gradi-
ent: (i) Vp =278 and (ii) Vp = 27'°. Readily apparent from
these photographs is the increase in both the final heights and
widths of the interface with the decrease of the gradient.



FIG. 2. Example of the time evolution of the model for
a very small lattice (L = 5). Here, grey squares represent
blocked cells and white squares represent unblocked cells. The
numbered cells are wet. The numbers indicate at which time
step the cells first become wet. At t = 4, we wet the cells at
the left and at the right of the cell numbered 3. Also, in the
same time step we wet the cells below those two, regardless
of the fact that they were previously blocked. Similarly, at
t = 5, we are able to wet cells in the first column from wet
cells in the second column that were, at some earlier time,
blocked cells. The heavy line indicates the pinned interface.



