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We study the dynamics of a system composed of interacting units each with a complex internal
structure comprising many subunits and treat the case in which each subunit grows in a multiplicative
manner. We propose a model for such systems in which the interaction among the units is treated in a
mean field approximation and the interaction among subunits is nonlinear. We test the model and find
agreement between our predictions and empirical results based on a large economics database spanning
20 years. [S0031-9007(98)05355-1]
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In the physical sciences, power law scaling is usually
associated with critical behavior (thus requiring a particu-
lar set of parameter values), or with scale free growth
processes [1]. For example, in the Ising model there is a
particular value of the strength of the interaction between
the units composing the system that generates correlations
extending throughout the entire system and leads to power
law distributions. In the social and biological sciences,
there also appear examples of power law distributions
(such as incomes [2], bird populations [3], and heart
dynamics [4]). Although self-organized criticality has
been the preferred explanation for these results, it is
difficult to imagine that for all these diverse systems, the
parameters controlling the dynamics spontaneously self-
tune to their critical values.

In this Letter, we propose an alternative mechanism, in
the spirit of scale free growth processes, that could explain
how power law scaling in biological or social sciences
can emerge even in the absence of critical dynamics.
The guiding principles for our approach, to be justified
below, are as follows: (i) The units composing the
system have a complex evolving structure (e.g., the firms
competing in an economy are composed of divisions, the
cities in a country competing for the mobile population
are composed of distinct neighborhoods, the population
of some species living in a given ecosystem might be
composed of groups living in different areas), and (ii) the
size of the subunits composing each unit evolve according
to a random multiplicative process.

Fortunately, for one of the examples listed above, there
is a wealth of quantitative data, and here we focus on
a large database giving the time evolution of the size
of firms [5]. In an economy, the units composing the
entire system are the competing firms. In general, these
firms have a complex internal structure, with each firm
composed of divisions (the subunits of each unit). It
has been proposed that the evolution of a firm’s size
is described by a random multiplicative process with
variance independent of the size, and that each firm can be

viewed as a structureless unit [6]. However, later studies
[7–10] reveal that the dynamics of real firms are not fully
consistent with the simplified picture of Ref. [6].

We develop a model that dynamically builds a diver-
sified, multidivisional structure, reproducing the fact that
a typical firm passes through a series of changes in or-
ganization, growing from a single-product, single-plant
firm, to a multidivisional, multiproduct firm [11]. The
model reproduces a number of empirical observations for
a wide range of values of parameters and provides a pos-
sible explanation for the robustness of the empirical re-
sults. Because of our encouraging results for the case of
firm growth, our model may offer a generic approach to
explain power law distributions in other complex systems.

The model, illustrated in Fig. 1, is defined as follows.
A firm is created with a single division, which has a size
j1�t � 0�. The size of a firm S � Siji�t� at time t is
the sum of the sizes of the divisions ji�t� comprising the
firm. We define a minimum size Smin below which a firm
would not be economically viable, due to the competition
between firms; Smin is a characteristic of the industry
in which the firm operates. We assume that the size of
each division i of the firm evolves according to a random
multiplicative process [6]. We define

Dji�t� � ji�t�hi�t� , (1)

where hi�t� is a Gaussian-distributed random variable
with zero mean and standard deviation V independent of
ji . The divisions evolve as follows:

(i) If Dji�t� , Smin, division i evolves by changing its
size, and ji�t 1 1� � ji�t� 1 Dji�t�. If its size becomes
smaller than Smin —i.e., if ji�t 1 1� , Smin —then with
probability pa, division i is “absorbed” by division 1.
Thus, the parameter pa reflects the fact that when a
division becomes very small it will no longer be viable
due to the competition between firms.

(ii) If Dji�t� . Smin, then with probability �1 2 pf�,
we set ji�t 1 1� � ji�t� 1 Dji�t�. With a probabil-
ity pf , division i does not change its size—so that
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FIG. 1. Schematic representation of the time evolution of
the size and structure of a firm. We choose Smin � 2, and
pf � pa � 1.0. The first column of full squares represents
the size ji of each division, and the second column represents
the corresponding change in size Dji . Empty squares represent
negative growth and full squares positive growth. We assume,
for this example, that the firm has initially one division of size
j1 � 25, represented by a 5 3 5 square. At t � 1, division 1
grows by Dj1 � 3. A new division, numbered 2, is created
because Dj1 . Smin � 2, and the size of division 1 remains
unchanged, so for t � 2, the firm has 2 divisions with sizes
j1 � 25 and j2 � 3. Next, divisions j1 and j2 grow by 2
and 22, respectively. Division 2 is absorbed by division 1,
since otherwise its size would become j2 � 3 2 2 � 1 which
is smaller than Smin. Thus, at time t � 3, the firm has only
one division with size j1 � 25 1 2 1 1 � 28. Note that if
division 1 would be absorbed, then division 2 would absorb
division 1 and would then be renumbered 1. If division 1 is
absorbed and there are no more divisions left, the firm “dies.”

ji�t 1 1� � ji�t�—and an altogether new division j is
created with size jj�t 1 1� � Dji�t�. Thus, the parame-
ter pf reflects the tendency to diversify: the larger is pf ,
the more likely it is that new divisions are created.

The dynamics are thus controlled by three independent
parameters: V , pa, and pf —Smin just sets the scale, so
the results of the model do not depend on its value. We
assume that there is a broad distribution of values of Smin

in the system because firms in different activities will have
different constraints.

In Fig. 2, we compare the predictions of the model
for the distribution of firm sizes in the stationary state
with the empirical data [10]. The stationary state is
reached after approximately 10 “years,” provided that
new firms are created regularly. We define one “year”
as � iterations of our rules applied to each firm, and
we find no significant dependence of the results on the
value of � for � . 10. We find similar results for a
wide range of parameters: V � 0.1 0.2, pa � 0.01 1,
and pf � 0.1 1.0.

FIG. 2. Probability density of the logarithm of firm size
for the model and for U.S. publicly traded manufacturing
firms in the 1994 “COMPUSTAT” database. These results were
obtained drawing log Smin from a Gaussian distribution with
average value log�5 3 105� and width D � 5. Similar results
would be obtained for other broad distributions of Smin. The
numerical simulations were performed with parameters V �
0.15, pf � 0.8, pa � 0.05, and � � 50 (for these parameter
values, the actual probability of a new division being created
per division and per iteration is approximately 0.01).

It is common to study the logarithm of the one-year
growth rate, r1 � ln R1, where R1 � S� y 1 1��S� y�,
with S� y� and S� y 1 1�, are the sizes of the firm in
the years y and y 1 1. The empirical distribution of
r1 for firms with size S is, to first order approximation,
consistent with an exponential form [10]

p�r1jS� �
1p

2 s1�S�
exp

√
2

p
2 jr1 2 r̄1j

s1�S�

!
, (2)

where r̄1 represents the average growth rate. Moreover,
the standard deviation s1�S� is consistent with a power
law form

s1�S� � S2b , (3)

and for U.S. manufacturing firms, b � 0.2 [10]. We
find that p�r1jS� is quite similar in form to the empiri-
cal results [10]. Figure 3(a) compares s1�S� with the
empirical data of Ref. [10]: for both, Eq. (3) holds with
b � 0.17 6 0.03. Equations (2) and (3) allow us to
scale the growth rate distributions for different firm sizes
[Fig. 3(b)].

We next address the question of the structure of a given
firm. To this end, we calculate the probability density
r1�jijS� to find a division of size ji in a firm of size S.
For the model, we find that the distribution r1 scales as
a power law up to Sa and then it decays exponentially.
Hence, we make the hypothesis that r1 obeys the scaling
relation

r1�jijS� � S2af1�ji�Sa� , (4)

where f1�u� � ut for u ø 1 with t � 2�3. This hy-
pothesis is confirmed by the scaling plot of Fig. 4(a). We
find a � 0.66 6 0.05 from plotting the average value of
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FIG. 3. (a) Dependence of the standard deviation of the
growth rates on firm size. Shown are the predictions of the
model and the empirical results. The values of the parameters
are the same as in Fig. 2. The straight line with slope 0.17 is a
least squares fit to the predictions of the model. (b) Probability
density of one-year growth rates for different firm sizes plotted
in scaled variables. The distributions are tent shaped, as for
the empirical data [10], and consistent with an exponential
distribution.

ji against S. The same value of a leads to the best
scaling plot.

Next, we make the hypothesis that the probability
density r2�NjS� to find a firm with size S composed of
N divisions obeys the scaling relation

r2�NjS� � S2�12a�f2�N�S12a � . (5)

In writing (5), we use the fact that from (4) the charac-
teristic size of a typical division scales as Sa , so that the
typical number of divisions in a firm is S�Sa � S12a .
Figure 4(b) shows that the results of the model are con-
sistent with the scaling relation (5), with the same value
of the scaling exponent a used in Fig. 4(a).

The results described by Eqs. (4) and (5) are in qualita-
tive agreement with empirical studies [9] that show larger
firms to be more diversified. Moreover, Eq. (5) states that
the number of independent subunits in a firm of size S
scales as S12a . Since N does not change much during a

FIG. 4. (a) Data collapse of the conditional probability density
r1; the data fall onto a single curve corresponding to the scaling
form (4). (b) Data collapse of the conditional probability
density r2; the data fall onto a single curve corresponding to
the scaling form (5).

year and assuming that the subunits have similar sizes, we
can apply the central limit theorem, from which it follows
that s1 � N21�2, leading to the testable scaling law

b � �1 2 a��2 . (6)

For a � 0.66 6 0.05, Eq. (6) predicts b � 0.17 6 0.03,
in remarkable agreement with our independent calculation
of b.

We find that the predictions of the model are only
weakly sensitive to the parameter values, which perhaps
is the reason why firms operating in quite different
industries are described by very similar empirical laws.
Accordingly, we conjecture that the scaling laws found
for U.S. manufacturing firms [10] also hold for other
countries, such as Japan, with b � 0.2; this conjecture
is currently being tested with empirical data [12].

The present model rests on a small number of as-
sumptions. The three key assumptions are as follows:
(i) Firms tend to organize themselves into multiple divi-
sions once they achieve a certain size. This assumption
holds for many modern corporations [11]. (ii) There is
a broad distribution of minimum scales in the economy.
This assumption has also been verified empirically [8].
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(iii) Growth rates of different divisions are independent of
one another. For an economist, the latter is the stronger
of these assumptions. However, we find that correlations
in the growth rates of divisions within the same firm, even
weak correlations, lead to b ! 0. Thus, we confirm that
it is the assumption of independence among the growth
rates that generates results similar to the empirical find-
ings of Ref. [10].

There are two features of our results that are perhaps
surprising. First, although firms in our model consist
of independent divisions, we do not find b � 1�2. To
understand why b , 1�2, suppose that the distribution
of sm � ln Smin is a Dirac-d function. Although this
assumption is unrealistic, it leads to an understanding of
the underlying mechanisms in the model. In this case, it
is a plausible assumption that the number of divisions will
increase linearly with firm size, because the distribution
of division sizes is narrow and confined between Smin and
Smin�V . This hypothesis is confirmed numerically, and we
find (i) b � 1�2 and a � 0, and (ii) that the distribution
of the logarithm of firm sizes is still close to Gaussian,
with a width W which is a function of the parameters
of the model. Then, by integration of the distribution of
the logarithm of firm sizes over sm, we can estimate the
value of b for the case of a broader distribution of sm.
Suppose that sm follows some arbitrary distribution with
width D . Averaging s

2
1 �S� over this distribution, we find

b � W �2�D 1 W �. For a wide range of the values of
the model’s parameters, D . W , and we find that b is
remarkably close to the empirical value b � 0.2.

Second, the distribution p�r1jS� is not Gaussian but
“tent” shaped. We find this result arises from the in-
tegration of nearly Gaussian distributions of the growth
rates over the distribution of Smin. For large values
of jr1j, the saddle point approximation gives p�r1jS� �
exp�2 log2 jr1j�, which decays slower than exponentially,
in qualitative agreement with the model’s predictions and
with empirical observations. For jr1j ø 1, p�r1jS� is ap-
proximately Gaussian, while for intermediate values of
jr1j, the distribution decays exponentially. Our analyti-
cal predictions are in agreement with the model and with
empirical results.

The model leads to a number of conclusions. First,
it suggests the deviations in the empirical data from
predictions of the random multiplicative process may be
explained by (i) the diversification of firms, i.e., firms
are made up of interacting subunits, and (ii) the fact that
different industries have different underlying scales, i.e.,
there is a broad distribution of minimum scales for the
survival of a unit (for example, a car manufacturer must
be much larger than a software firm).

Second, the model suggests a possible explanation for
the common occurrence of power law distributions in
complex systems. Our results suggest that the empirically
observed power law scaling does not require the system

to be in a critical state, but rather can arise from an
interplay between random multiplicative growth and the
complex structure of the units composing the system.
Here we addressed the case in which the interactions
between the units can be treated in a “mean field”
way through the imposition of a minimum size for the
subunits. More general interactions may still lead to
power law scaling, so our model may offer a framework
for the study of complex systems.
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