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Anomalous fluctuations in tracer concentration in stratified media with random velocity fields
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We find a quantitative law that describes the nature of the anomalous fluctuations in tracer concentra-
tion when diffusion occurs in a stratified medium, with drift velocities which are constant in the x direc-
tion, but vary randomly from layer to layer in the y direction. We find that the fluctuations of the tracer

concentration P=P(x,t) are
n(log,oP)~ A /(log,oP)’exp[ — B /(log,oP )*].

described by an

extremely broad histogram of the form

Moreover, the relative fluctuations 8P increase exponen-

tially with x. Our results are supported by numerical calculations based on the method of exact

enumeration.

PACS number(s): 02.50.+s, 05.40.+j, 47.55.Mh

How are the laws of diffusion modified when a tracer
particle diffuses in a layered medium? Such a question
arises when one seeks to apply the laws of physics to
practical situations, such as the nature of underground
water transport in stratified media, particularly the
diffusion of solute (tracer particles) in groundwater
flow—a quite complex phenomena related to water quali-
ty and pollution [1]. In the experiments, a tracer solute is
introduced in the flow at a specific point, and its concen-
tration is measured at different observation points [2].

We use a simple model, due to Matheron and de Marsi-
ly (MM) [3], to study the fluctuation in tracer concentra-
tion in the presence of random velocity fields. The MM
model is a two-dimensional stratified system consisting of
distinct layers with different transport properties in each
layer. The layers consist of contiguous rows of the same
orientation parallel to the x axis. A random velocity *v,
is assigned to each layer. To study the tracer diffusion, a
walker starts at the origin and at each step moves either
in the ty directions with probability 1 or along the direc-
tion of the bias (+x direction) with probability 1 (Fig. 1).
It is known [4,5] that the second moment of the displace-
ment scales faster than linearly with time: (x?2)~¢3/2
This phenomenon, called superdiffusive transport, is of
considerable current interest in a variety of fields [6].

Here we show that P(x,t?), the probability to find the
tracer with a given x coordinate at time ¢ in a given
configuration of bias velocities, varies remarkably from
layer to layer. Also, we find that the relative fluctuation
in P(x,t) increases exponentially with x, in contrast to a

4

homogeneous system where P (x,?) has no fluctuations at
all. The fluctuations of P =P (x,t) (for a given x and %)
can be described by the histogram n (log,P), which gives
the number of times the values of P(x,?) are between
log,o,P and log,,P +dlog,,P and by the moments
(P%x,t)) with g >0; here the brackets denote an aver-
age over different velocity configurations [7]. We find
both an anomalously broad histogram and that the aver-
age moments cannot be described by a single exponent
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FIG. 1. The random stratified medium on the square lattice,
indicating the hopping rules for a typical lattice site.
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but rather display the characteristic of multifractality:
(P7) ~{(P)"? and r(q)~q?*" [8].

First, we calculate the moments of P(x,t) from which
we derive the corresponding histograms. We follow Zu-
mofen, Klafter, and Blumen [9] and make the assumption
that (a) x (¢) is Gaussian distributed when averaged over
velocity configurations for which the walker visits a fixed
number of layers R,

172
1 —x2R /2Ct? (1)

¢ ’

R

(P(x,t|lR))= 32C

and (b) for a given time ¢, the probability that the walker
has visited exactly R layers is given by [10]

Yt|R)=ctR7> 3 5
j=1 R

—(2j +1)*a%c,1/R?
e .

27225 +1)%c,t | ]

X (2)

In (1) and (2), C, ¢y, and ¢, denote constants. Making use
of these expressions, we write the gth moment of the
probability density as [11]

(PUx,t)) = f0°°<Pq(x,t|R)>¢(r|R)dR ) 3)

For t /R ? large, we can consider only the first term of the
sum in (2). Using the method of steepest descent to
evaluate the convolution integral in Eq. (3), we see that
the principal contribution to the integral comes from
R ~t/q'*x?/3, The first moment of P(x,t) is [12]

(P(x,t))y~t3e—Cu* E%M >>1. @)
t
Using (3), we find that the leading term of the gth mo-
ment is
2/3u4/3

(PUx,t)) ~e 1 (5)

In terms of the average probability density

(PUx,1)) ~(P(x,1))"9, (6a)
where for g >0
(g)~q" (y=1%). (6b)

This nonlinear dependence of 7(g) on g implies that the
moments cannot be described by a single exponent but in-
stead show multifractal behavior [13], and it is not valid
for very small g (i.e., as ¢ —0) since the steepest-descent
method used here fails in that range, as can be easily seen
from Eq. (3).

To test our prediction (6), we use the exact enumera-
tion method [14] to calculate numerically P(x,z) for a
given random configuration of velocities, in a system
composed of L=196 layers with periodic boundary con-
ditions along the y direction. Values of P (x,t) for fixed x
and t were recorded, and we average over 75000
configurations of velocities. Figure 2(a) tests (6) for the
choice x=45, t=96; plotted as the logarithm of
logo{|P) as a function of log,,q for g=1 to 8. The
slope of this plot gives ¥ =0.693, which is close to the
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FIG. 2. (a) Plot of the logarithm of the absolute value of the
logarithm of the gth moment of P(x,¢) vs the logarithm of ¢ for
(g =1-8), x=45 and t=96 (or u =x/t3/*=1.47). (b) Exponent
y in Eq. (6b) as a function of the nondimensional variable
u=x/t¥*4

prediction y =2 from (6). The analysis of Fig. 2(a) was
repeated for a range of values of u =x /¢3/% and the re-
sulting predictions for y(u) are plotted in Fig. 2(b). We
see that ¥ =2 for u > 1, the regime where the asymptotic
expression for ( P(x,?)) is valid.

To derive the histogram n (log;oP), we express the gth
moment of the probability density as

(P9)= [ " Pn(log,,P)d (log,,P) , (7)
0

where now P denotes P(x,?). By comparing (3) and (7)
and using

Y(¢|R)dR =n(log,,P)(dlog,P) , (8)
we find the form of n(log,,P)
1 —B/(log,,P)?
(1 )J=A——— AN 9
n (log,oP (log,gP)? e

where 4 =aox*/t*>=ayu* and B=byx*/t*=byu* and
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FIG. 3. Histogram n (log,oP) for u =x /t3/*=1.47. The con-
tinuous line corresponds to the prediction of Eq. (9) and the +
symbols to the numerical calculations.

ay,by are constants. There will be correction terms to
(9), but Fig. 3 demonstrates that the functional form of
(9) is sufficient to fit the numerical data.

The expression for n(log;,P) of Eq. (9) can be rescaled
to make manifest its scaling properties. Figure 4 plots
log,oPn (log,,P) as a function of u2log,yP for three values
of the scaled variable u. The data collapse supports the
analytic expression (9).

The relative fluctuations 8P (x,?) of the probability
density for a fixed x and ¢ can be evaluated using the
above results:

(P%x,t))—(P(x,1))?

8P (x,1)= 10a)
(1) (P(x,1))? (10a

from Eq. (6)
8P (x,0)={(P(x,1))?" " 2—1~(e **"*—1, (10b)

where k =22/3—2. Since k <0, 8P (x,t)~exp(|k|x*"/t)
grows stronger than exponentially with x.

FIG. 4. Rescaled histogram log,oPn (log;oP) vs u2log;oP for
+, u=x/t34=1.25; 0, u=1.36; and O, u=1.47.

In summary, we have shown that the average values of
the tracer concentration by themselves are not sufficient
to describe the dynamic behavior of the tracer concentra-
tion in stratified random media. To obtain a full descrip-
tion of the spatial distribution, one needs to calculate all
the moments of the tracer concentration P. The broaden-
ing of the histogram of P should occur in experimental
systems, and may explain previous difficulties encoun-
tered in obtaining numerical estimates for the average
concentration [5].
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