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We study the backbone connecting two given sites of a two-dimensional lattice separated by an arbitrary
distance r in a system of size L at the percolation threshold. We find a scaling form for the average backbone
mass: �MB��LdBG(r/L), where G can be well approximated by a power law for 0�x�1: G(x)�x� with
��0.37�0.02. This result implies that �MB��LdB��r� for the entire range 0�r�L . We also propose a
scaling form for the probability distribution P(MB) of backbone mass for a given r . For r	L , P(MB) is
peaked around LdB, whereas for r�L , P(MB) decreases as a power law, MB

�
B , with 
B�1.20�0.03. The
exponents � and 
B satisfy the relation ��dB(
B�1), and � is the codimension of the backbone, ��d
�dB . �S1063-651X�99�51408-6�

PACS number�s�: 64.60.Ak, 05.45.Df

I. INTRODUCTION AND MOTIVATION

The percolation problem is a classical model of phase
transitions, as well as a useful model for describing connec-
tivity phenomena, and in particular for describing porous
media �1–3�. At the percolation threshold pc , the mass of
the largest cluster scales with the system size L as M
�Ld f . The fractal dimension d f is related to the space di-
mension d and to the order parameter and correlation length
exponents  and � by d f�d�/� �1–3�. In two dimensions,
d f�91/48 is known exactly.

An interesting subset of the percolation cluster is the
backbone that is obtained by removing the non-current-
carrying bonds from the percolation cluster �4�. The structure
of the backbone consists of blobs and links �1,5–7�. The
backbone can in fact be further partitioned into subsets ac-
cording to the magnitude of the electric current carried �8,9�.
The backbone is relevant to transport properties �1–3� and
fracture �10�. The fractal dimension dB of the backbone can
be defined via its typical mass MB , which scales with the
system size L as MB�LdB. The backbone dimension is an
independent exponent and its exact value is not known. A
current numerical estimate �11� is dB�1.6432�0.0008.

The operational definition of the backbone has an inter-
esting history �1–3�. Customarily, one defines the backbone
using parallel bars, and looks for the percolation cluster �and
the backbone� that connects the two sides of the system �4�.
A different situation arises in oil field applications �12�,
where one studies the backbone connecting two wells sepa-
rated by an arbitrary distance r . This situation is important
for transport properties, since in oil recovery one injects wa-
ter at one point and recovers oil at another point �12�. From
a fundamental point of view, it is important to understand
how the percolation properties depend on different boundary
conditions.

We study here the backbone connecting two points sepa-
rated by an arbitrary distance r in a two-dimensional system

of linear size L . One goal is to understand the distribution of
the backbone mass MB(r ,L), and how its average value
scales with r and L in the entire range 0�r�L .

II. MODEL

We choose two sites A and B belonging to the infinite
percolating cluster on a two-dimensional square lattice �the
fraction of bonds is p�pc�1/2). A and B are separated by a
distance r and symmetrically located between the bound-
aries. Using the burning algorithm �13�, we determine the
backbone connecting these two points for values of L rang-
ing from 100 to 1000. For each value of L , we consider a
sequence of values of r with 2�r�L�2. In order to test the
universality of the exponents, we perform our study on three
lattices: square, honeycomb, and triangular lattice. For sim-
plicity, we restrict our discussion here to the square lattice, as
we find similar results for the other two lattices.

III. BACKBONE MASS PROBABILITY DISTRIBUTION

We begin by studying the backbone mass probability dis-
tribution P(MB). We show that P(MB) obeys a simple scal-
ing form in the entire range of r/L ,

P�MB��
1

rdB
Fr/L� MB

rdB � , �1�

where F is a scaling function whose shape depends on the
ratio r/L .

For r	L , it seems reasonable to assume that P(MB) will
be peaked around its average value �MB��LdB. The data
collapse predicted by Eq. �1� is represented in Fig. 1�a�. In
this case, the scaling function F is peaked at approximately
LdB.

However, the case r�L is less clear. In fact, we expect
for r�L that the backbone mass fluctuates greatly from one
realization to another, since its minimum value can be r and
its maximum can be of order Ld f . Figure 1�b� shows a log-
log plot of P(MB) and the straight line suggests that
P(MB)�MB

�
B . It has a lower cutoff of order r �since the
backbone must connect points A and B) and an upper cutoff
of order LdB. We find good data collapse �Fig. 1�c��, which
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indicates that the scaling function F0 is a power law in the
range from rdB to LdB, with exponent approximately 
B
�1.20�0.03 �there is a cutoff at MB�LdB not shown here�.
We note that for larger values of r , a ‘‘bump’’ �indicated by
an arrow on Fig. 1�b�� located at approximately LdB appears
and assumes increasing importance when r approaches L .
This bump appears also in Fig. 1�c� already for r�8.

The exponent 
B is connected to the blob size distribution
�5� since typically, the two sites belong to the same blob, and
the sampling of backbones is equivalent to sampling of the
blobs. In �5�, there is a relation between the exponent 
 gov-
erning the blob size distribution and the fractal dimension of
the backbone d/dB�
�1. The exponent 
B governs the
variation of the whole backbone mass, and is therefore ob-
tained by integration of the blob size distribution. We thus
have 
B�
�1, which implies

d

dB
�
B , �2�

FIG. 2. �a� Log-log plot of the average backbone mass �MB� vs
r for four different values of L . �b� Data from Fig. 2�a� collapsed
with the use of the scaling form proposed in Eq. �3�. The error on �
is typically 0.02.

FIG. 1. �a� Data collapse of P(MB) using Eq. �1� for three
different values of r	L . �b� Probability distribution of the back-
bone mass for L�1000 and r�2 �computed with 105 configura-
tions�. The exponent 
B�1.20�0.03 is obtained by a linear fit over
the range 30�MB�3�104. The arrow denotes the fact that MB

peaks at LdB. �c� Data collapse of P(MB) for L�400 using Eq. �1�
for three different values of r .
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This relation gives the estimate 
B�1.22, which is in good
agreement with our numerical simulation.

IV. AVERAGE BACKBONE MASS

We now study the average backbone mass �MB�. From
dimensional considerations, the r dependence can only be a
function of r/L . We thus propose the following Ansatz:

�MB�r ,L ���LdBG� r

L � . �3�

In Fig. 2�a�, we show a double logarithmic scale MB versus
r for different values of L . In order to test Eq. �3�, we scale
the data of Fig. 2�a�. The data collapse is obtained using
dB�1.65 and is shown on Fig. 2�b�. This �log-log� plot sup-
ports the scaling Ansatz �3�. Moreover, one can see that the
scaling function G is, surprisingly, a pure power law on the
entire range �0,1�, with exponent ��0.37�0.02. This result
leads to the following interesting behavior for the average
mass:

�MB�r ,L ���LdB��r�. �4�

The results �1� and �3� are consistent, as we will show.
The average mass is given by

�MB�r ,L ����
r

LdB

Fr/L� M

rdB� dM

rdB
M . �5�

A. The case r	L

In the case where r	L , the function F1(x) is peaked
around LdB and we obtain

�MB�r ,L ���LdB, �6�

which is consistent with Eq. �3�.

B. The case r�L

When r�L , the scaling function Fr/L has now a power
law behavior F0(x)�x�
B for x�1, and F0(x)�0 for x
�1. The average mass is then given by

�MB�r ,L ����
rdB

LdB� M

rdB� �
B dM

rdB
M . �7�

Assuming that L/r is large enough, the integral in Eq. �5� can
be approximated as LdB��r�, where

��dB�
B�1 �. �8�

In our simulation 
B�1.20�0.03, which leads to the value
��0.33�0.05, in reasonable agreement with the value mea-
sured directly on the average mass.

Moreover, using Eq. �2� together with Eq. �8�, we obtain

��d�dB , �9�

which means that � is the codimension of the fractal back-
bone.

V. SUMMARY

To summarize, we find that for any value of r/L , the
scaling form, Eq. �1�, for the probability distribution is valid.
The shape of the scaling function F depends on r/L , being a
peaked distribution for r	L , and a power law for r�L . The
average backbone mass varies with r and L according to Eq.
�5�. For fixed system size, it varies as �MB��r� �for 0�r
�L). The value of � is small (�	0.37), indicating that the
backbone mass does not change drastically as r changes. On
the other hand, the exponent governing the variation of �MB�
with L for fixed r is expected to be larger, with �MB�
�LdB��. This exponent dB�� is not equal to the fractal
dimension dB of the backbone, but is smaller by an amount
equal to �.
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