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Abstract

The basic assumption of common extreme value statistics is that di�erent events in a time
record are uncorrelated. In this case, the return intervals rq of events above a given threshold size
q are uncorrelated and follow the Poisson distribution. In recent years there is growing evidence
that several hydro-meteorological and physiological records of interest (e.g. river 1ows, tem-
peratures, heartbeat intervals) exhibit long-term correlations where the autocorrelation function
decays as Cx(s)∼ s−�, with � between 0 and 1. Here we study how the presence of long-term
correlations changes the statistics of the return intervals rq. We 2nd that (a) the mean return
intervals Rq = 〈rq〉 are independent of �, (b) the distribution of the rq follows a stretched ex-
ponential, ln Pq(r) ∼ −(r=Rq)�, and (c) the return intervals are long-term correlated with an
exponent �′ close to �.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

By extreme value statistics (for reviews, see e.g. Refs. [1–3]) one wants to learn
about the occurrence of rare events, for example 1oods, that usually are very uncom-
fortable and make a lot of damage. One usually considers a record of N elements xi,
i = 1; 2; : : : ; N , that can be, e.g., annual river 1ows or annual temperatures at a given
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Fig. 1. (a) Illustration of the de2nition of the return intervals rq(l), l=1; : : : ; Nq, from a record xi , i=1; : : : ; N .
The return intervals for three threshold values q1, q2 and q3 are indicated by arrows. (b) Illustration of the
distribution function D(x) of the values xi in a record. Here, a Gaussian with zero mean and variance one
is shown. The ratio between the grey area in the 2gure and the total area under the distribution function is
the probability that an event of size greater than or equal to q occurs.

hydrological or meteorological station. The main quantity here is the time interval be-
tween events xi that exceed a certain threshold q. When the threshold is small, the
return intervals are short, when the threshold is large, the return intervals are long (see
Fig. 1(a)).
The 2rst quantity one is interested in here, is the mean return time of an event of

size q or greater, which we denote by Rq. The second quantity is the distribution of the
return intervals, which we denote by Pq(r). Note that the mean return interval is just
the 2rst moment of Pq(r). And 2nally, we are interested in the correlation behaviour of
the return intervals. If they are correlated, the corresponding autocorrelation function
Cr(s) between return intervals separated by s − 1 return intervals, is non-zero in a
certain range of s. If they are uncorrelated, the correlation function is zero except for
s= 0.
The basic assumption in the classical extreme value statistics is that the events are

uncorrelated, at least when they are far away from each other. In this case, one can
obtain the mean return time of large events of size greater than q just by considering
the distribution function D(x) of the xi record. In the example in Fig. 1(b), D(x) is
a Gaussian with zero mean and variance one. The ratio between the grey area in the
2gure and the total area under the distribution function is the probability that an event
of size greater or equal q occurs, and the mean return time is just the inverse of this
probability. When the events are uncorrelated, also the return intervals are uncorrelated,
and the distribution Pq(r) is the well-known Poisson distribution,

Pq(r) = (1=Rq) exp(−r=Rq) : (1)

In this case, the only quantity that remains to be calculated is the mean return time,
which directly follows from the tail of the distribution D. However, when q is large,
an event of size ¿ q is a rare event. In this case, the tail of the distribution function
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is not well known, and a great amount of work of the conventional extreme value
statistics has been invested in 2nding reasonable extrapolations of D(x) for very large
values of x (see e.g. Refs. [1–5]).
Nothing is known, however, to the best of our knowledge, of the e�ect of long-term

correlations on the statistics of the return intervals r, and this is, what we consider
next.

2. Long-term correlated signals

Long-term correlated sequences xi, with zero mean, are characterized by an auto-
correlation function

Cx(s) = 〈xi xi+s〉= 1
N − s

N−s∑

i=1

xi xi+s (2)

that decays very slowly, by a power law, with the time span s separating the pairs of
elements,

Cx(s) ∼ s−�; 0¡�¡ 1 : (3)

The mean correlation time is the integral over Cx(s). It is easy to see that this time
diverges when � is between 0 and 1, and that is why we call these records long-term
correlated. In the last years it has become clear that several physiological and hydro-
meteorological records are long-term correlated. For example, the sequence of heartbeat
intervals of a healthy person, during wake [6,7] and during REM sleep [8] is long-range
correlated with an exponent � close to 0.3 for REM sleep. We also know, actually al-
ready since the pioneering work of Hurst [9], that daily or annual river 1ows measured
at a hydrological station are usually long-term correlated with � between 0.4 and 0.5
(see also Refs. [10,11]). Similar values have also been obtained for many other geo-
physical records [12,13] (see also Ref. [14]). Other examples include the volatility of
stock prices with � ≈ 0:15 [15], traKc in the internet [16,17], and atmospheric as well
as sea-surface temperatures [18–21]. For temperature records at continental stations, �
is always very close to 0.7 [18,19]. For island stations as well as for sea-surface tem-
peratures, � is around 0.4 [20,21]. The fact that for all continental stations, irrespective
their climate zone and their distance from the oceans, the range of � values is very
narrow [22], has made this power law an ideal (and uncomfortable) test bed for global
climate models [23].
Next we consider, how the mean return interval Rq, the distribution Pq(r) of the

return intervals and their correlation behaviour is changed in the presence of long-term
correlations. We will always assume that the xi values are chosen from a Gaussian
distribution with zero mean and unit variance. We have generated the long-term cor-
related series using the Fourier transform technique (see, e.g. Ref. [24] and references
therein). First, we consider the mean return interval Rq.
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3. Mean return interval Rq

For simplicity, we assume periodic boundary conditions. In this case, for a given
threshold q, there exist Nq return intervals rq(l), l=1; 2; : : : ; Nq, which then satisfy the
sum rule

Nq∑

l=1

rq(l) = N : (4)

When we shuLe the data randomly, thereby destroying the long-term correlations,
the sum rule also applies (with the same Nq value). Accordingly, for both long-term
correlated and uncorrelated records, Rq is given by

Rq =
1
Nq

Nq∑

l=1

rq(l) =
N
Nq
; (5)

i.e., the mean return interval is not changed by the presence of long-term correlations,
and the techniques developed for uncorrelated data to calculate Rq can be used also
for records with long-term correlations. Next, we consider the distribution Pq(r) of the
return intervals.

4. Distribution function Pq(r) of the return intervals

To investigate Pq(r) as a function of �, we have generated long records (N = 106)
for �=0:4; 0:7, and without correlations (�=∞). For each � value we calculated Pq(r)
for several threshold values q. The result for �=0:4 and q=1:5 is shown in Fig. 2(a)
(in grey), where also Pq(r) for uncorrelated data is shown (in black) for comparison.
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Fig. 2. (a) Distribution Pq(r) of the return intervals r for the quantile q = 1:5 for uncorrelated data
(2lled squares) and for long-term correlated data (� = 0:4, grey histogram). (b) Double-logarithmic plot
of −ln(Pq(r)=Pq(1)) as a function of r=Rq for �=0:4, 0.7 and ∞ (from bottom to top) and q=1:5 (black),
2.0 (light grey), 2.5 (dark grey). In this presentation, the slope of the curves corresponds to the exponent �
in the stretched exponential (6). The straight lines are shown for comparison and they have the slope � for
the long-term correlated data and slope one for the uncorrelated data (� =∞).
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This semi-logarithmic plot Pq(r) for � = 0:4 di�ers considerably from the Poisson
distribution for uncorrelated data. The probability of having return intervals well below
Rq and well above Rq is strongly enhanced compared with the uncorrelated case. To
determine the functional form of Pq(r), we have plotted, in a double-logarithmic fashion
−ln(Pq(r)=Pq(1)) as a function of r=Rq. The results for �=0:4, 0.7 and ∞ and q=1:5,
2.0 and 2.5 are shown in Fig. 2(b). For each value of �, the curves with di�erent q
values collapse to a single line. Each line, in the double-logarithmic plot, has a slope
very close to �. Therefore, for long-term correlated records with exponent � between
0 and 1, the distribution function of the return intervals becomes simply a stretched
exponential,

ln Pq(r) ∼ −(r=Rq)� ; (6)

where the exponent is identical with the correlation exponent.

5. Correlations among the return intervals

Next we studied the type of correlations between the return intervals when the
original record exhibits long-term correlations. To this end, we did not evaluate the
auto-correlation function Cr(s) of the return intervals rq(l) directly, but instead eval-
uated the 1uctuation function Fr(s) to determine—for long-term correlated data—the
correlation exponent �′ in Cr(s) ∼ s−�

′
(compare with Eq. (3)). To obtain Fr(s), one

considers the record rq(1)−Rq; rq(2)−Rq; : : : ; rq(Nq)−Rq, and regards the lth element
as lth increment of a random walker on a linear chain. The walker steps to the left
(right) if rq(l)−Rq is negative (positive), and the step length is |rq(l)−Rq|. The 1uc-
tuation function Fr(s) is just the root-mean-square displacement of the random walker,
after s steps. It is known that (see e.g. Refs. [8,18])

Fr(s) ∼ s�; �= 1− �′=2 (7)

if the data are long-term correlated with an exponent �′ between 0 and 1. Otherwise,
Fr(s) ∼ s1=2. Accordingly, from the asymptotic behaviour of Fr(s) we can learn, if the
considered record of return intervals is long-term correlated. The result is shown in
Fig. 3 for � = 0:4 and 0.7. In the double-logarithmic presentation, both curves are
asymptotic straight lines with exponents �=0:8 for �=0:4 and �=0:65 for �=0:7. This
suggests that also the return intervals are long-term correlated, with an exponent �′ that
is close to the exponent � of the original records. In long-term correlated records, long
sequences can occur where the data are well above or below their average value, and
it is generally a diKcult task to distinguish between long-term correlations and trends.
When the return intervals are long-term correlated, there is a much higher probability
than for uncorrelated intervals to obtain sequences where the rq are well above Rq
followed by sequences where the rq are well below Rq. Our results suggest that such
a behaviour may not necessarily be the consequence of a trend (global warming etc.),
but may arise in a natural way when the data are long-term correlated, which is the
case for river 1ows and temperature records.
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Fig. 3. Fluctuation analysis for the records of detrended return intervals, rq(l)−Rq, l=1; : : : ; Nq for q=1:5
(2lled symbols), q=2:5 (open symbols) for long-term correlated data with �=0:4 (circles) and 0.7 (triangles).
The 1uctuation function Fq(s) is shown versus time scale s in a double logarithmic plot, where the slope � of
the data is related to the correlation exponent �′ =2− 2� of the return intervals. Both curves asymptotically
approach the straight lines with slopes �=0:8 for �=0:4 and �=0:65 for �=0:7. This suggests that also the
return intervals are long-term correlated, with an exponent �′ that is close to the exponent � of the original
records. The length of the original records was N = 2× 106.
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