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Abstract

Many natural records exhibit long-term correlations characterized by a power-law decay of the
auto-correlation function, C(s) ∼ s−�, with time lag s and correlation exponent 0¡�¡ 1. We
study, how the presence of such correlations a3ects the statistics of the return intervals rq for
events above a certain threshold value q. We 4nd that (a) the mean return interval Rq does not
depend on �, (b) the distribution of rq follows a stretched exponential, ln Pq(r) ∼ −(r=Rq)�, and
(c) the return intervals are also long-term correlated with the exponent �, yielding clustering of
both small and large return intervals. We provide indications that both the stretched exponential
behaviour and the clustering of rare events can be seen in long temperature records.
c© 2004 Published by Elsevier B.V.
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1. Introduction

In recent years there is growing evidence that many natural records exhibit long-term
persistence [1]. Prominent examples include heartbeat records [2–4], DNA sequences
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Fig. 1. Illustration of the return intervals rq(l), l=1; : : : ; Nq, of a record xi; i=1; : : : ; N . The return intervals
for two threshold values q1 and q2 are indicated by arrows.

[5,6], hydrological data [7,8], meteorological and climatological [9–12] records, as well
as turbulence records [13,14]. Long-term correlations have also been found in the
volatility of economic records [15].

An important problem in extreme value statistics (for reviews, see, e.g.,
Refs. [16–19]), is the re-occurrence of rare events exceeding a threshold q (see Fig. 1).
The aim is to predict catastrophic events such as Koods, droughts or stock crashes. The
basic assumption is that the events are uncorrelated. In this case, the statistics of the
return intervals rq is solely determined by the tail of the distribution D(x) of the ele-
ments xi in the considered record. When the tail of the distribution D(x) is determined,
the mean return interval Rq is given by Rq=〈rq〉={∫ ∞

q D(x) dx=
∫ +∞

−∞ D(x) dx}−1. For
uncorrelated records, the return intervals are also uncorrelated and obey the Poisson
distribution Pq(r)= (1=Rq) exp(−r=Rq). Accordingly, one of the main challenges of the
traditional extreme value statistics has been to develop appropriate methods to evaluate
the tail of D(x) accurately.

Here we study, how the statistics of the return intervals is modi4ed in the presence
of long-term persistence. We consider records {xi}; i = 1; : : : ; N , standardized to zero
mean and unit variance, that are long-term correlated with an auto-correlation function
Cx(s) = 〈xixi+s〉 ≡ (1=(N − s)) ∑N−s

i=1 xixi+s that decays by a power law,

C(s) ∼ s−�; 0¡�¡ 1 : (1)

We are interested in the return intervals and their statistics. In the following we show,
how the mean return interval Rq, the distribution Pq(r) of the return intervals, and
the correlations between subsequent return intervals are a3ected by the presence of
long-term correlations.
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2. Mean return interval and distribution of the return intervals

For simplicity, we assume that the xi-values (i=1; : : : ; N ) are chosen from a Gaussian
distribution. First we consider the mean return interval Rq of a given record. For a
certain threshold q, there exist Nq return intervals rq(l); l= 1; : : : ; Nq. For 1�Nq, we
have

∑Nq
l=1 rq(l) ∼= N (for N approaching in4nity, the equal sign holds). When the data

are shuLed, the long-term correlations are destroyed, but the sum rule still applies (with
the same Nq value). Accordingly, for both cases, Rq ≡ (1=Nq)

∑Nq
l=1 rq(l) ∼= N=Nq,

i.e., the mean return interval is not a3ected by the long-term correlations and can be
obtained directly from the tail of the distribution function D(x). Accordingly, there is
a one-by-one correspondence between q and Rq, which we also con4rmed numerically.

Next, we consider the distribution Pq(r) of the return intervals as a function of the
correlation exponent �. In the numerical study, we have generated long records up to
length N = 221, for various values of �, by the Fourier-transform technique (see, e.g.,
Ref. [20] and references therein). For each � we calculated Pq(r) for several threshold
values q. A representative result for �=0:4 and q=2:0 (Rq � 44) is shown in Fig. 2(a)
(in grey). In the semi-logarithmic plot, Pq(r) for �= 0:4 di3ers considerably from the
Poisson distribution of the shuLed data that we show for comparison. The probabilities
of having return intervals well below Rq and well above Rq are strongly enhanced in
the correlated record. To determine the functional form of Pq(r), we have plotted in
a double-logarithmic fashion −ln(Pq(r)=Pq(1)) as a function of r=Rq. The results for
�= 0:1, 0.4, 0.7 and q = 1:5, 2.5 (corresponding to Rq � 15 and 161), as well as for
the shuLed data are shown in Fig. 2(b). For each value of �, the curves with di3erent
q values collapse to a single line. The slopes of all lines coincide, within the error
bars, with the values of the correlation exponent �. Accordingly, we conclude that the
distribution function of the return intervals has the form of a stretched exponential,

ln Pq(r) ∼ −(r=Rq)�; 0¡�6 1 : (2)
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Fig. 2. (a) Distribution Pq(r) of the return intervals r for the threshold q = 2:0 (Rq � 44) for long-term
correlated data (� = 0:4, grey histogram) and for shuLed data (4lled squares). (b) Double-logarithmic plot
of −ln(Pq(r)=Pq(1)) as a function of r=Rq for �=0:1, 0.4, 0.7 as well as for the shuLed data (from bottom
to top) and q = 1:5 (black), 2.5 (grey). The straight lines are shown for comparison and have the slope �
for the long-term correlated data and one for the uncorrelated shuLed data.
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We like to note that a similar stretched exponential behaviour has been obtained ana-
lytically [21], when considering the problem of zero-level crossing in the presence of
long-term correlations. For �¿ 1, the correlations are short-ranged, and the distribution
of large return intervals is described by the Poisson distribution.

3. Correlation of the return intervals

Eq. (2) indicates that return intervals both well below and well above Rq are consid-
erably more frequent for long-term correlated data than for uncorrelated data. It does
not quantify, however, if the return intervals themselves are arranged in a correlated or
in an uncorrelated fashion. To study the correlations, we evaluated the auto-correlation
function Cr(s)= 〈rq(l)rq(l+ s)〉−R2

q. The results for �=0:4 and 0.7 and three q-values
each (q= 1 and 2) are shown in Fig. 3(a). In the double-logarithmic presentation, for
each �-value, the three curves are parallel straight lines. This suggests that also the
return intervals are long-term correlated, with the same exponent � as in the original
record. Accordingly, large and small return intervals are not arranged in a random
fashion. Instead, we expect them to form clusters.

The calculation of the auto-correlation functions requires record lengths of more
than 106 data points. Real records consist of considerably less data points. Thus, for
quantifying the clustering of extreme events in real data, we need to consider quantities
that require considerably less statistics. Such a quantity is the conditional mean return
interval Rq;r0 , which is de4ned as the mean value of those intervals in the record that
immediately follow an interval of length r0. For uncorrelated systems, subsequent return
intervals are independent of each other and Rq;r0 =Rq. For long-term correlated records,
we expect Rq;r0 =Rq ¡ 1 for r0 well below Rq and Rq;r0 =Rq ¿ 1 for r0 well above Rq.
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Fig. 3. (a) Auto-correlation function Cr(s) of the return intervals for q=1:0 (circles) and q=2:0 (triangles) for
long-term correlated data with �=0:4 (open symbols) and �=0:7 (4lled symbols). In the double logarithmic
plot, the slopes of the straight lines are equal to �. The plot suggests that also the return intervals are
long-term correlated, with the exponent � of the original records. (b) Mean conditional return interval Rq;r0
versus preceding return interval r0 (normalized by Rq) in a double-logarithmic plot for �= 0:4, and for two
values of q [as in (a)]. The straight line is the result for the shuLed uncorrelated data. The length of the
series was N = 221, and averages over 1000 con4gurations have been performed.
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Fig. 3(b) shows the numerical results for Rq;r0 =Rq as a function of r0=Rq, for � = 0:4
and q= 1 and 2. Within the numerical accuracy, the data for di3erent q-values scale.
The 4gure quanti4es the way, clumping and stretching of large events occurs when the
data are long-term correlated. For � = 0:4, for example, Rq;r0 can be as low as 0:7Rq
for r0 � Rq=5 and as large as 1:8Rq for r0 close to 5Rq.

4. Application to temperature records

For testing the relevance of our results for real records, we have analyzed the
218-year maximum temperature record of Prague [11] and a 851-year long recon-
structed record of annual northern hemisphere temperatures [22]. Both data sets are
long-term correlated, with � ≈ 0:7 for the temperatures in Ref. [11] and � ≈ 0:4 for
the temperature reconstruction. 1 For comparison with the theoretical results, we have
standardized the records to zero mean and unit variance. The results are presented in
Fig. 4. Figs. 4(a) and (b) show the distribution Pq(r) of the return intervals r for
the original data (4lled circles) and for the shuLed data (open triangles). While the
shuLed data clearly follow the Poisson distribution (dashed line) the original data are
close to a stretched exponential decay (continuous line) with � = 0:7 (in Fig. 4(a))
and �=0:4 (in Fig. 4(b)) in agreement with the prediction (2). The Kuctuations of the
results are due to the short length of the records (in particular for the annual data in
Fig. 4(b)). In Fig. 4(a) strong short-range correlations (due to ‘Grosswetterlagen’) on
time scales below 10 days cause an increased occurrence of very short return intervals.
Hence, the normalization of the distribution Pq(r) results in a shift of the distribution

data for large r and we had to multiply the stretched exponential by the prefactor 0.2
to obtain agreement with the data.

Figs. 4(c) and (d) show the mean conditional return interval Rq;r0 , for both tem-
perature records. The 4gures indicate clustering of small and large return intervals, in
agreement with the predicted behaviour of Fig. 3(b). For the shuLed data, Rq;r0 =Rq
is close to one and the clustering disappears, as expected. The scattering on both the
original and the shuLed data is due to the short length of the records.

In summary, we have shown that for long-term correlated records with a Gaussian
distribution, the distribution of the return intervals follows a stretched exponential with
an exponent � identical to the correlation exponent. We also found that the return
intervals are arranged in a long-term correlated fashion, again described by the ex-
ponent �. It is important to emphasize, that both the distribution function and the
long-term correlations between the return intervals scale the same for di3erent q-values
(Figs. 2(b) and 3(b)). Due to the scaling, we can evaluate the behaviour of return inter-
vals of extremely rare events (very large q-values) from the behaviour of intermediate
q-values that are accessible in the observational data. We also presented indications

1 We studied the long-term correlations by a detrended Kuctuation analysis (DFA), see e.g. Ref. [11],
where the scaling of the Kuctuation function F(s) ∼ s� is considered. The exponent � is related to the
correlation exponent � by � = 1 − �=2. We obtained � = 0:8, from which � = 0:4 follows.
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Fig. 4. Distribution function Pq(r) and mean conditional return interval Rq;r0 for (a,c) daily temperature of
Prague (CZ, 1775–1992) and (b,d) reconstructed annual temperature data of the northern hemisphere (1000–
1850) [22]. The full circles represent the observed data sets, while the open triangles represent data sets that
are obtained by randomly shuLing the observed original records. Both original records exhibit long-term
correlations with � ≈ 0:7 (a) and 0.4 (b). Since Pq(r)Rq as well as Rq;r0 =Rq depend only on r=Rq [see
Figs. 2(b) and 3(b)], we averaged Pq(r)Rq and Rq;r0 =Rq over several q-values in order to improve the
statistics. For the reconstructed temperature record (b,d) we limited ourselves to data up to 1850 in order to
exclude possible clustering of rare events due to global warming.

that both the stretched exponential behaviour and the clustering of rare events can be
seen in long observational and reconstructed temperature records.
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