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Abstract

We consider a L evy !yer of order � that starts from a point x0 on an interval [0; L] with
absorbing boundaries. We 7nd a closed-form expression for an arbitrary average quantity, char-
acterizing the trajectory of the !yer, such as mean 7rst passage time, average total path length,
probability to be absorbed by one of the boundaries. Using fractional di=erential equations with
a Riesz kernel, we 7nd exact analytical expressions for these quantities in the continuous limit.
We 7nd numerically the eigenfunctions and the eigenvalues of these equations. We study how
the results of Monte-Carlo simulations of the L evy !ights with di=erent !ight length distribu-
tions converge to the continuous approximations. We show that if x0 is placed in the vicinity of
absorbing boundaries, the average total path length has a minimum near �= 1, corresponding to
the Cauchy distribution. We discuss the relevance of these results to the problem of biological
foraging and transmission of light through cloudy atmosphere. c© 2001 Elsevier Science B.V.
All rights reserved.

1. Introduction

In the past two decades, L evy !ights (see Refs. [1–11]) found numerous applications
in natural sciences. Realizations of L evy !ights in physical phenomena are very diverse,
including !uid dynamics, dynamical systems, and statistical mechanics. Recently, L evy
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!ights have been proposed as a model for animal foraging [7,12–16], cell di=usion
[17], and transmission of light through cloudy atmosphere [18,19].

In general, L evy !ights model anomalous di=usion, which is governed by rare but
extremely large jumps of di=using particles. L evy !ights are characterized by broad
distributions of their step lengths, for which the second moment does not exist. L evy
!ights of order �¡ 2 have distributions of step lengths with diverging moments of
order m¿ � and converging moments of order m¡�. In the absence of absorbing
boundaries, the generalized central limit theorem [4,20] guarantees that the probability
density �(x; n) of the displacement x of L evy !ights converges after many steps to
the L evy stable distribution of order �:

�(x; n) =
1
	

∫ ∞

0
exp(−n‘�

0q
�) cos(qx) dq ; (1)

where ‘0 is the characteristic width of the distribution of a single step and n is num-
ber of steps. This distribution is a generalization of the Gaussian distribution, and is
characterized [4] for x → ∞ by the power law decay of its density

�(x; n) = n‘�
0�1x−�−1 + O(x−2�−1) ; (2)

where

�1 = 	−1�(� + 1) sin(	�=2) :

In the absence of boundaries, the generalized central limit theorem allows us to treat
L evy !ight di=usion with the help of fractional di=erential equations [3,4,6,9,21–26].
In the presence of boundaries, the fractional derivative formalism is less clear. How-
ever, this case has many practical applications, in which it is important to 7nd the
mean 7rst passage time, the average trajectory length and other quantities of interest.
The behavior of these quantities is important in studies of biological foraging [15,16],
in which the foraging eJciency is de7ned to be inversely proportional to total path
length. L evy !ights in a slab geometry with absorbing boundaries have been used to
model the transmission of light through cloudy atmosphere [18]. Using heuristic argu-
ments con7rmed by numerical simulations, Ref. [18] found the scaling behavior of the
transmission probability of a photon through a slab of width L and the total geomet-
rical path length of transmitted and re!ected light. This behavior was experimentally
observed in Ref. [19].

The average total path length traveled by a L evy !yer before absorption, 〈S(x0)〉,
is equivalent to the total time spent by a L evy walker before absorption. L evy walks
on a 7nite interval with absorbing boundaries has been studied in Ref. [27], where
the asymptotic behavior of the survival probability was found. This behavior is related
to the asymptotic behavior of 〈S(x0)〉. Recently [28], the approximate expressions for
the mean 7rst passage time for both Schneider–Wyss sub-di=usion equation [29] and
superdi=usion equation [22] have been obtained by separation of variables. The latter
case exactly corresponds to the L evy !ight problem. Later [30], the exact expressions
for the mean 7rst passage time and other average quantities for L evy !ights have been
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derived with the help of fractional di=erential equations with Riesz kernels [3,21,31–
33]. Here, we extend the results of Refs. [28,30] and test them by Monte-Carlo (MC)
simulations.

2. Discrete L�evy �ights

Consider a L evy !ight that starts at point x0 of the interval [0; L] with absorbing
boundaries. The !yer makes independent subsequent !ights of variable random lengths
‘ with equal probability in both directions. The length of each !ight is taken from the
power-law distribution

P(|‘|¿r) = (‘0=r)� ; (3)

where exponent � can vary between 0 and 2, and ‘0 is the minimal !ight length, which
serves as the lower cuto= of the distribution. The probability density of the !ight length
is given by

p(‘) =
�‘�

0

2
�(|‘| − ‘0)

|‘|�+1 ; (4)

where �‘�
0=2 is a normalization constant and �(x) = 1 for x¿ 0 or 0 otherwise. When

�¿ 2, the second moment of the !ight distribution converges and the process becomes
equivalent to normal di=usion. As soon as the !yer lands outside the interval [0; L],
the process is terminated. Instead of the probability density Eq. (4), one could use any
power-law decaying density [4,27] regularized at small distances ‘0, including L evy
stable distribution Eq. (1) with n= 1.

Suppose that the probability density of 7nding a L evy !yer at point x after n !ights
is Pn(x). Then the probability density after n+1 !ights is given by the convolution of
the probability density Pn(x) and the probability density of the next !ight p(x) given
by Eq. (4)

Pn+1(y) =
∫ L

0
p(y − x)Pn(x) dx : (5)

Let L�(‘0) be an integral operator with kernel p(x − y) which is de7ned on a
function f(x) of an interval [0; L]. Then the distribution after n !ights is given by

Pn(x) = [Ln
�P0](x) : (6)

The initial probability density of the !yer located at position x0 is the Dirac delta
function, P0(x) = �(x − x0).

In general, consider a quantity 〈Q(x0)〉= 〈∑∞
i=1 qi〉, where qi = q(xi−1; xi) is a func-

tion of the starting point xi−1 and ending point xi of the ith !ight, and 〈 〉 denotes
the average over all possible processes starting at point x0. Then, such a quantity [30]
must satisfy a recursion relation

〈Q(x0)〉= 〈q0(x0)〉 +
∫ L

0
〈Q(x1)〉p(x0 − x1) dx1 ; (7)
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where 〈q0(x)〉 ≡ ∫∞
−∞ p(x1 − x0)q(x0; x1) dx1. Note that if x1 is outside the interval

[0; L], the particle is absorbed by one of the boundaries and the value q(x0; x1) should
be de7ned according to its physical meaning for the absorbed particle. Eq. (7) belongs
to the class of Fredholm integral equations of the second kind [34], and has a unique
solution

〈Q(x0)〉= (I −L)−1〈q0(x0)〉 ; (8)

where I is a unity operator If(x) ≡ f(x).
The most simple example of the quantity 〈Q(x0)〉 is the average number of steps

before absorption 〈n(x0)〉. In this case 〈q0(x0)〉= 1. Another example is the total !ux
through the right boundary. This !ux is related to the transmission probability of pho-
tons through the clouds [18]. By de7nition, the !ux through the right boundary is equal
to the probability Pr(x0) of the absorption of the !yer that starts at point x0 by the ab-
sorbing boundary x=L. In this case, quantity q must be de7ned as q(x0; x1) = �(x1−L).
The very 7rst !ight is absorbed by the right boundary with probability pr(x0) ≡
〈q0(x0)〉=

∫∞
L p(x1 − x0) dx1, or after integration for the case of truncated power-law

density and x06L− ‘0

pr(x0) = [‘0=(L− x0)]�=2 : (9)

Therefore, Pr(x0) satis7es Eq. (7) with 〈q0(x0)〉=pr(x0). For the case of L evy stable
density, one cannot write down such a simple expression for pr(x0), but as it follows
from Eq. (2), the asymptotic behavior of pr(x0) for ‘0 → 0 remains the same as in
Eq. (9) with the only di=erence that now it is multiplied by the coeJcient 2�1=�, i.e.,
pr(x0) = �1[‘0=(L− x0)]�=� + O([‘0=(L− x0)]2�).

To 7nd the expression for the average total path length, one must de7ne 〈q0(x0)〉 ≡
s(x0), where s(x0) is the average length of the 7rst !ight that starts from a point x0.
In the absence of the absorbing boundaries, the average !ight length with probability
density p(‘) of Eq. (4) is given by 〈|‘|〉=

∫ +∞
−∞ |‘|p(‘) d‘, which is independent of

the starting point and diverges for �6 1. In the presence of the absorbing boundaries,
the !ight starting from a point x0 cannot exceed the distances x0 and L− x0 from this
point to the boundaries. One can show that the average length of a !ight that starts
from a point x0 of an interval [‘0; L − ‘0] is given in case of truncated power-law
density by

s(x0) =
‘0

2(1 − �)

[(
‘0

x0

)�−1

+
(

‘0

L− x0

)�−1

− 2�

]
: (10)

If �= 1, this expression has to be replaced by the expression containing logarithms
[30]. In case of the L evy stable density we can 7nd the asymptotic behavior of this
expression in case �¿ 1, i.e., s(x0) = 2

∫∞
0 �(x; 1)x dx= 2�(1 − 1=�)=	 [4]. In case

�¡ 1, the asymptotic behavior is given by the same expression Eq. (10), in which the
7rst two power-law terms are multiplied by the constant 2�1=�, and the last constant
term is neglected.
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Finally, one can 7nd the average number 〈nr(x0)〉 and the average total path length
〈Sr(x0)〉 of the !ights absorbed by the right boundary. One can show, that the quantity
Pr(x0)〈nr(x0)〉 satis7es Eq. (7) with 〈q0(x0)〉=

∫ L
0 Pr(x1)p(x1 − x0) dx1 + pr(x), and

the quantity Pr(x0)〈Sr(x0)〉 satis7es Eq. (7) with 〈q0(x0)〉=
∫ L

0 Pr(x1)p(x1 − x0)|x1 −
x0| dx1 + (L− x0)pr(x). These quantities are of interest for the problem of light prop-
agation through the clouds [18,19].

3. The continuous limit

It can be shown that for the case of the power-law truncated kernel with �¡ 2 [30],
there exists an operator [3,31,32]

D� ≡ lim
‘0→0

‘−�
0 [L�(‘0) −I] : (11)

The result of this operator acting on any function f(x) with a derivative f′(x) and
7nite values at the boundaries x= 0 and L is de7ned as

[D�f](x) = V:P:
∫ L

0

sgn(y − x)f′(y) dy
2|y − x|� − f(0)

2x�
− f(L)

2(L− x)�
: (12)

This operator is a self-adjoint operator similar to the double di=erentiation operator
d2=dx2. It can be expressed [3,31] as the linear combination of right and left Riemann–
Liouville fractional derivatives of the order �. In case of power-law truncated kernel
[30], the di=erence of the two operators

d�(‘0) ≡ ‘−�
0 [L�(‘0) −I] −D� (13)

decays as ‘2−�
0 when ‘0 → 0. It can be shown that the leading term of the operator

d� is proportional to the operator of the second derivative

d�(‘0) = ‘2−�
0

�
2(�− 2)

d2

dx2 + o(‘2−�
0 ) : (14)

In the general case, when the kernel p(|x − y|) of the operator L on the interval
[0; L] is such that p(x)¿ 0,

∫ +∞
−∞ p(|x − y|) dx= 1, and it has asymptotic behavior

p(x) = �x�+1[1 + o(1)] for x → ∞, we still can expect that Eq. (11) is valid if the
characteristic width ‘0 ≡ (2�=�)1=� → 0. However, the correction d� may di=er from
Eq. (14), depending on the correction terms in the asymptotic for p(x). This general
theorem is of principal importance for the theory of L evy !ights on the bounded
domain.

In analogy with the di=usion equation with continuous time, we can de7ne a su-
perdi=usion equation [3,21,22,28] based on L evy !ights. Instead of the discrete process
de7ned by Eq. (5), one can write

@P(x; t)
@t

=
‘�

0

t0
D�P(x; t) ; (15)
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where t0 is the duration of each !ight, and ‘�
0=t0 is the fractional analog of the di=usion

coeJcient. Note that ‘0 plays a role similar to the mean free path, and t0 plays the
role of the mean collision interval.

The operator D� has an orthogonal normalized set of eigenfunctions fk(x), such
that D�fk(x) = "kfk(x), and fk(0) =fk(L) = 0 [32]. Similarly to the solution of usual
di=usion equation, the solution of Eq. (15) can be expressed via separation of variables
as a series of eigenfunctions

P(x; t) =
∞∑
k=1

e"k‘
�
0 t=t0fk(x)

∫ L

0
fk(y)P(y; 0) dy : (16)

In Ref. [28], where the method of separation of variables for the superdi=usion equation
on a 7nite interval has been 7rst proposed, it has been assumed that the eigenvalues
"k asymptotically behave at large k as "k ∼ −(k=L)� ¡ 0 and that the eigenfunctions
fk(x) can be well approximated by the eigenfunctions

√
2=L sin(x	k=L) of the Laplace

operator with absorbing boundary conditions. Numerical studies (see Section 5) con7rm
these assumptions but show that eigenfunctions fk and sines have di=erent behavior
near absorbing boundaries, namely, fk(x) ∼ x�=2 as x → 0.

4. Analytical expressions for average quantities

Having de7ned the properties of the operator D�, we can derive continuous limit
approximations OQ(x0) for the average quantities 〈Q(x0)〉, de7ned for the discrete L evy
!ights by Eq. (8). Formal substitution of Eq. (11) into Eq. (8) yields

OQ(x0) =D−1
� h(x0) ; (17)

where function h(x) satis7es the equation

h(x0) = − ‘−�
0 〈q0(x0)〉 : (18)

In the general case, the equation

V:P:
∫ L

0

sgn(y − x)f′(y) dy
2|y − x|� = h(x) (19)

with boundary conditions

f(0) = a; f(L) = b (20)

belongs to a known class of generalized Abel integral equations with Riesz fractional
kernel [31–33]. It can be shown [32,33] that such an equation with boundary conditions
(20) has a unique solution which can be obtained via spectral relationships for Jacobi
polynomials [31,33] or by the Sonin inversion formula [33]. Similar inversion formulae
are given in Ref. [32]. In particular [30,33], an equation:∫ L

0

sgn(y − x)
2|x − y|� ’(y) dy= h(x); 06 x6L (21)
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has a general solution:

’(x) =C’0(x) + ’1(x) ; (22)

where ’0 = (Lx − x2)(�=2)−1 is a general solution of the homogeneous equation with
h(x) = 0 and

’1(z) =
4 sin(	�=2)

	�B(�=2; �=2)
z�=2−1 d

dz

∫ L

z
dt t1−�(t − z)�=2

d
dt

×
∫ t

0
y�=2(t − y)�=2−1h(y) dy (23)

is a partial solution of the inhomogeneous equation. Since Eq. (19) contains f′(x) =
’(x), one can always satisfy the 7rst boundary condition Eq. (20) by de7ning f(x) =∫ x

0 ’(z) dz + a. The second boundary condition Eq. (20) can be satis7ed if we select

constant C =L1−�
[
b− a− ∫ L

0 ’(x) dx
]
=B(�=2; �=2).

The probability of absorption by the right boundary Pr(x0) satis7es boundary condi-
tions a= 0; b= 1. All other functions of interest satisfy absorbing boundary conditions
a= b= 0.

Using the Sonin inversion formula, one can obtain [30] the analytical continuous limit
approximations On, OS, and OPr for the average quantities 〈n〉, 〈S〉, and Pr , respectively.
In the case of average number of steps, we have h(x) =− ‘−�

0 and the solution can be
expressed in elementary functions:

On(x0) =
sin(	�=2)

	�=2

[
(L− x0)x0

‘2
0

]�=2

=
sin(	�=2)M�(z − z2)�=2

	�=2
; (24)

where z ≡ x0=L, M ≡ L=‘0. One can verify this solution by performing contour inte-
gration around the cut [0; L] on the complex plane and computing the residue of the
integrand at in7nity. Note that in case of L evy stable density, this equation has to
be divided by the normalization coeJcient 2�1=�, and thus we have On(x0) =M�(z −
z2)�=2=�(� + 1).

In case of the average total path length, Sonin formula leads to an expression

OS(x0) =L[A(�; z) + B(�; z)M�−1] ; (25)

where the 7rst term dominates for �¡ 1 and the second term dominates for �¿ 1. In
case of truncated power-law density, this terms can be found explicitly:

A(�; z) =
(2 − �)
2(1 − �)

[
1 − 4

 �(z) +  �(1 − z)
�(� + 2)B(�=2; �=2)

]
; (26)

where  �(z) =F(2−�=2; �=2; �=2+2; z)z�=2+1 is a hypergeometric function [35,36] and

B(�; z) =
2 sin(	�=2)(z − z2)�=2

	(�− 1)
: (27)
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In case of L evy stable density the asymptotic for �¡ 1 remains the same, but the
asymptotic for �¿ 1 changes: B(�; z) = 2	−1(z − z2)�=2�(1 − 1=�)=�(1 + �).

Finally, the probability OPr(x0) of the absorption by the right boundary in the con-
tinuous limit is given by the solution of the homogeneous equation (21)

OPr(x0) =
(x0

L

)�=2 F(�=2; 1 − (�=2); (�=2) + 1; x0=L)
(�=2)B(�=2; �=2)

: (28)

For x0 → 0, the asymptotic behavior of OPr(x0) is given by OPr(x0) ∼ (x0=L)�=2 which
is in complete agreement with the result of Ref. [18] for the transmission probability
of the photons through the clouds of depth L. For L evy stable density, the asymptotic
expression for OPr(x0) remains the same.

5. Numerical analysis

In order to obtain the eigenvalues and the eigenfunctions of the operator D�, we
extrapolate to M →∞ the eigenvalues and the eigenvectors of the M × M symmet-
rical matrix Aij =p(|i − j|), where p(j) are the transition probabilities for the Rie-
mann random walk [1]. This matrix is the discrete analog of the operator L. Rie-
mann random walk performs !ights of non-zero integer length ±j with probability
p(±j) = [2/(� + 1)j�+1]−1, where /(�) ≡ ∑∞

j=1 j−� is the Riemann /-function. The
Riemann transition probabilities are slightly di=erent from the ones treated in Ref. [30].
We choose the Riemann probabilities here, because they lead to faster convergence of
the eigenvectors and the eigenvalues to the continuous limit. We test our result with
transition probabilities of Ref. [30] and 7nd good agreement for large values of M .

We 7nd the 7rst ten orthonormal eigenvectors fk such that Afk = 0k fk for several
increasing values of M . According to a general theorem which we mention above, the
matrix ‘−�

0 (A − I) should converge to D� on the interval (0; 1) if ‘0 ≡ (�/(� +
1))−1=�=M → 0. Indeed we 7nd that fk converge to the continuous eigenfunctions fk(x)
de7ned on the interval (0; 1) with x= j=(M + 1), and (0k − 1)=[�/(� + 1)M�] → "k ,
where "k are the eigenvalues of the operator D�. Fig. 1 shows that the eigenfunctions
of the operator D� resemble

√
2 sin(k	x), the eigenfunctions of the classical di=usion

equation. Moreover, for large values of the wave number k, the eigenfunctions fk

converge to sines except in the vicinity of the boundaries. This behavior is expected
since in the center of the interval, the e=ect of the boundaries can be neglected and the
problem becomes equivalent to the problem of the fractional di=usion on the in7nite
interval. The latter case can be solved by means of Fourier transform [22] and it
was shown that sin(qx) are the continuous spectrum eigenfunctions with eigenvalues
−q��(1 − �) cos(	�=2) [31,32]. Following the logic of Ref. [28], one can expect that
in the case of 7nite interval, we should have discrete spectrum with q= k	=L in order
to satisfy absorbing boundary conditions. Thus for large k, the eigenvalues "k should
behave as

"k = − (k	=L)��(1 − �) cos(	�=2)[1 + O(1=k)] : (29)
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Fig. 1. First six eigenfunctions fk (x) for �= 0:5 for M = 1000, L= 1 (bold lines) in comparison with√
2 sin(k	x) (thin lines).
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Fig. 2. The behavior of the scaled eigenvalues L|"k |1=�=k versus 1=k for �= 0:5; 1:0; 1:5 and increasing values
of M . Circles on the x-axis indicate the predictions of Eq. (29).

This is illustrated by Fig. 2 which shows the quantities L|"k |1=�=k versus 1=k. Indeed,
the graphs are well approximated by straight lines with intercepts that are close to the
values predicted by Eq. (29). Note that for large �, convergence of the operator L

becomes very slow. According to Eq. (14), we can expect that the eigenvalues for
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Fig. 3. The scaled behavior of the 7rst eigenfunction f1(x)=x�=2 versus x, for �= 0:5; 1:0; 1:5. for M = 1000
(dotted line) and 2000 (solid line).

7nite M approach limiting values as M�−2. For the case �= 1:5, shown on Fig. 2,
the error decays as M−0:5 and we can extrapolate the eigenvalues for M →∞. This
limiting set of eigenvalues perfectly converges for 1=k → 0 to the value predicted by
Eq. (29).

In order to demonstrate that in the vicinity of the absorbing boundaries, the eigen-
functions behave as x�=2, we plot the main eigenfunction f1(x)x−�=2 for small values of
x (see Fig. 3). One can see that the graphs are almost straight lines with small slopes
and 7nite intercepts. Moreover, the quality of the straight line 7ts improves with in-
creasing M . The rigorous analytical derivation of the properties of the eigenvalues and
the eigenfunctions of the operator D� remains to be an open question.

Numerical tests of convergence of the discrete L evy !ights to the solution of the
superdi=usion equation has been performed in Ref. [30] using matrix approach similar
to the method for 7nding eigenfunctions described above. Here, we demonstrate the
convergence using direct MC simulations of the L evy !ights with truncated power-law
density Eq. (4) and L evy stable density Eq. (1).

Fig. 4a illustrates, for the power-law density, the convergence of 〈n〉, 〈S〉, and Pr

to the continuous analytical expressions On, OS and OPr , respectively. One can see ex-
cellent convergence for M →∞ of the simulation results (symbols) to the analytical
expressions (lines) for �¡ 1, but slow convergence for �→ 2, where corrections de-
cay as M�−2. Fig. 4b shows the behavior of the same quantities for the L evy stable
density simulated with help of Eq. (8:2:1) given in Ref. [4]. On can see excellent con-
vergence for �¿ 1, but poor convergence for �→ 0, when we can expect correction
terms decaying as M−�.
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Fig. 4. The behavior of three scaled quantities 〈n〉, Pr , and 〈S〉 (symbols) obtained for L= 1 and 105 MC
realizations in comparison with scaled analytical solutions (lines) of Eqs. (24), (28), and (25), respectively.
(a) Power-law truncated density, (b) L evy stable density.
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Fig. 5. The behavior of 〈S〉 versus � near its minimum for L= 1, z = 1=320 and various values of M , shown
on the graph. Bold lines indicate analytical solutions. Thin lines indicate MC simulations with truncated
power-law density. Circles indicate MC simulations with L evy stable density.

Finally we test the convergence of the average quantities for M →∞ when x0 is
in the vicinity of absorbing boundary. The condition of this convergence is x0�‘0,
or zM�1. Fig. 5 shows the convergence of 〈S〉 for the case z = 1=320. Already,
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for M = 6400 the convergence is good in a broad region of 0¡�¡ 1:5. For any
7nite z and M →∞, the values of 〈S〉 converge to LA(�; z). For z�1, the
expression A(�; z) asymptotically behave [30] as 2z�=2=[�B(�=2; �=2)(1−�)]. This asymp-
totic has a singularity at �= 1 and a minimum at �= �min = 1 + 2=ln z + o(1=ln z).
For 7nite M , there is no singularity at �= 1 and the minimum shifts to the left,
closer to �= 1. Thus, for large enough M , the minimum of the average total path
length for discrete L evy !ights satis7es inequality 1 + 2=ln z¡�min ¡ 1. Note that
this behavior does not depend on the particular type of the distribution of the !ights
since the expression for A(�; z) is the same for all distributions decaying for large
x as x−�−1. To illustrate this we include in Fig. 5 the graph for the L evy stable
density.

6. Summary

We have studied L evy Flights in a 7nite interval with absorbing boundaries. We
show that many quantities of interest obey general recursion relation Eq. (7) which
has a form of the Fredholm integral equation of the second kind. We apply this method
to derive the probability of absorption by one of the boundaries, the average number
of !ights and the average total path length of the L evy !ights which is equivalent to
the mean 7rst passage time of the L evy walks.

We have shown how the discrete L evy !ights are related to the superdi=usion frac-
tional di=erential equation (15). This equations can be solved by separation of variables,
expressing solutions in series of eigenfunctions of Riesz operator Eq. (12). We have
computed the eigenfunctions and eigenvectors of this operator numerically, and study
their asymptotic properties.

For the continuous process described by Eq. (15), we derived exact analytical ex-
pressions Eqs. (24), (25), and (28) for the mean 7rst passage time, the average total
path length, and the probability of absorption by one of the boundaries, respectively.
All these quantities are the solutions of the fractional di=erential equation (19) with
Riesz kernel and with di=erent right-hand sides. We have compared these analytical
solutions with numerical solutions obtained for the discrete L evy !ights distributed with
truncated power-law density and with L evy stable density. We have shown that frac-
tional di=erential formalism provides good approximation for the truncated power-law
L evy !ights in the interval with absorbing boundaries except in the case of � → 2.
In contrast, for L evy stable density, the convergence is good for � → 2, but vanishes
for � → 0.

We have shown that expression for the average total path length has a minimum
at �≈ 1 if the process starts in the vicinity of the absorbing boundaries (see Fig. 5).
This result, as well as Eqs. (24), (25), and (28) can be applied to the problem of light
transmission through cloudy atmosphere [17,18] and biological L evy !ight foraging in
sparsely distributed food environment [15].
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