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Self-avoiding walks on finitely ramified fractals
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We present an exact real-space renormalization-group technique for self-avoiding walks performed on
finitely ramified fractals. The exponent 1/v of the walks is found to be strongly affected by the geometry
of the particular fractal. Also, the excluded volume is shown to be relevant for some fractals and ir-
relevant for others. For the Sierpinski gasket 1/v is shown to be equal to the fractal dimensionality of the

gasket.

Recently there has been an increasing interest in the
problem of self-avoiding walks (SAW’s) on fractal lattices
and on percolation clusters.!”* These two problems are re-
lated since exact fractals are a good model for the backbone
of the incipient infinite cluster at percolation.*®

In this paper we present a real-space renormalization-
group (RSRG) technique which is exact for SAW’s on fin-
itely ramified fractals. Finitely ramified fractals are fractals
in which one can isolate a part of it of any linear size R by
““cutting’’ at a minimal number #(R ) of places, and #/(R)
remains bounded as R — . As a matter of fact, we study
in here exact finitely ramified fractals where #(R) remains
constant as R is increased by the rescaling factor of the frac-
tal. This is what enables the RSRG to be analyzed exactly
in this kind of problem for the first time.

We begin by presenting the RSRG technique on the Sier-
pinski gasket [Fig. 1(a)]. The technique is essentially a de-
cimation procedure on the points 1, 2, and 3 of Fig. 1(a).
Let P; be the total number of SAW’s which can be per-
formed between vertices 4 and B without reaching C, and
P; the total number of SAW’s which can be performed
from A via C to B. These quantities can be exactly calculat-
ed from the knowledge of P, and P, which are similarly de-
fined on a fractal smaller by the scaling factor 2 (e.g., on
A13). In Figs. 1(b) and 1(c) we show the different config-
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FIG. 1. (a) Sierpinski gasket.
SAW’s on the gasket.

(b) and (c) Coarse graining of
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urations contributing to P{ and P, thus
P{=P!+P}+2PP,+P}+2PiP, ,
P; =P{P,+2P P} . M

From Eqgs. (1) one can iterate the ratio u=P;/P, which
converges extremely rapidly to u==2.7036. Let N; be the
mean number of steps for a SAW to reach point 1 starting
from A without passing through 3. Similarly, N, is defined
for SAW’s which pass through 3. Then it can be easily
shown that in order to calculate the respective Ni and N,
(on the ABC fractal) one just has to weight the contribution
of N1 by P; and of N, by P, for each configuration. Thus

PiN{= (2P? +2P,P,+3P{ +4P{P,)N,
+ (2PP,+2P} +2P{P,)N, , 2)

P3jN; = (2P3P,+2P P})N,+ (P{P,+4P\P})N; .

Note that the recursion formulas (1) and (2) are exact due
to the finite ramification of the Sierpinski gasket, while in
contrast for homogeneous space the best one can do is a
finite cluster approximation.” Now using the fact that P,
diverges while the ratio Pi/P,= u rapidly approaches a finite
limit, one gets from a repeated iteration of Egs. (1) and (2)

4+3u 2

Ni 24+p  2+p||M1

N 2420 atu|lvo - @)
24+p 2+p

The transforming matrix has the eigenvalues Aj=3 and
A2=1, thus for a SAW on the Sierpinski gasket

1/v=InA{/Inb =1n3/In2=1.585 ,

where v is the end-to-end exponent defined by
R(N)=(N)" and b is the rescaling factor. Note that 1/v
is exactly equal to the fractal dimensionality of the gasket.
This simple result can be understood on physical grounds.
The peculiar topology of the gasket does not allow the ex-
cluded volume interaction to take effect since only one part
of a SAW can enter and exit each subsection of the fractal
due to the fact that there are only three ramification points.
Thus only entropy considerations must be taken into ac-
count, and the maximal entropy is achieved for SAW’s
visiting all the parts of the fractal as seen from P{ and P;.%
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(b)

FIG. 2. (a) Generalization of the Sierpinski gasket (with n=4).
(b) Possible SAW with 1/v=d.

We show that for the following generalization of the Sier-
pinski gasket similar results are derived. The generalization
is simply based on an n X n checkboardlike triangle with »
triangles belonging to the fractal on the base. The Sierpin-
ski gasket fits the case of n =2. In Fig. 2(a) we show the
case of n =4 as a further example. The fractal dimensional-

ity is simply
=ln[n(n+1)/2] . (4)

Inn

From the physical arguments discussed above and from the
fact that one can always find paths [such as in Fig. 2(b)]
which go through all the parts of these fractals it follows

that for SAW’s performed on them one gets 1/v=d,.
However, the relation 1/v=4d, is not true for all fractals,
as can be seen from the Koch curvelike fractal presented in
Fig. 3. Let P; be the number of all possible SAW’s con-
necting 4 and B and passing through 1, and P; the number

of those that do not pass through 1, then clearly
P{=(P1+P)*,
Py =(P+Py)° .

Inserting the initial values P;= P,=1 and iterating Eq. (5)
one sees that the configuration passing through point 1
(described by P,) are dominant. Thus most of the SAW’s
pass through 4 out of the 5 parts of the fractal yielding
1/v=1n4/1n3 < d =1n5/In3.

Next we consider the fractal based on the iteration of Fig.
4(a). The three different cases of coarse graining are evi-
dent from Figs. 4(b), 4(c), and 4(d). The case in Fig. 4(d)
is of special interest since only one of the branches (4B or
CD) can be considered as belonging to the SAW while the
other might be the consequence of an excluded volume ef-
fect. The quantity P; is defined as the number of all possi-
ble configurations of SAW’s, one connecting the vertices 4
and B and the second connecting the vertices C and D so
that they do not cross each other. The recursion relations
are

P{=P,P}, P;=P3 P;=P}P;, (6)
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FIG. 3. Koch curvelike fractal with d =In5/In3.
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FIG. 4. (a) Checkboard fractal with n=1. (b), (c), and (d)

Coarse graining of SAW’s on the fractal. (e) Prohibited configura-
tion because of excluded volume.

and, choosing the initial values P;= P,=P3=1, one can see
that these are also the final values after an arbitrary number
of iterations. The obvious result is that for each possible
configuration of a SAW, the SAW passes through just three
of the subsections of the fractal, and since the rescaling fac-
tor is b =3 it means that the SAW is linear with v=1.
Note that this result is not because of the excluded volume
effect. One can clearly see that the contributions of the
configurations in Figs. 4(b) and 4(d) are just the same in
spite of the fact that in Fig. 4(d) there apparently is an ex-
cluded volume -effect. However, the excluded volume
makes such a configuration as in Fig. 4(e) impossible.

Finally, we consider the generalization of the fractal in
Fig. 4(a) which is based on a checkboard of (2n +1)
x (2n +1). Figure 4(a) is an example for n =1. We now
discuss the case of n =2 [Fig. 5(a)]. The coarse graining
can only yield typically the same three configurations as in
the case of n=1. In Figs. 5(b), 5(c), and 5(d) we show
some of the graphs which make the largest contributions to
the corresponding P, defined as before. Thus

P{ ~2P{P{P}, P;~2P{P;P} P;—~4P{P{Pi . )

It is clearly seen that P3/P; and P3/P, diverge upon iterat-
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FIG. 5. (a) Checkboard fractal with n=2. (b), (c), and (d)
Coarse graining of SAW’s on the fractal. (e) Coarse graining of
SAW’s not allowing case (d).
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ing, hence the configurations described by P3 are dominant.
Then one has to trace only N3. But from Fig. 5(d) and the
discussion above we get N3 =5N3, or v=1. Unlike the case
of n=1 this time it is the excluded volume effect that
causes a decrease in 1/v. This can be seen by setting P3=0
(i.e., neglecting the excluded volume). Then the major
contributions to the coarse graining of the cases in Figs.
5(b) and 5(c) are those given in Fig. 5(¢). One easily gets
then 1/v=1In9/In5 > 1. For a fractal checkboard with an ar-
bitrary n > 1 it seems that P; will dominate the statistics,
and then using configurations such as in Fig. 5(d) (which
include as many cases of N3 as possible) it turns out that

_In(2n2-2n+1) _ 5 _ In2n*+2n+1)
<= Gn+D) <%~ 1nGn+D

Thus the excluded volume in fractal checkboards can cause
1/v to drop below the dimensionality of the fractal.

In conclusion, we have presented a RSRG technique
which seems to predict the exact value of the exponent v of
SAW'’s performed on finitely ramified fractals. The tech-
nique presented above enables the calculation of 1/v for
SAW’s on any finitely ramified fractal. We showed that a

variety of cases may occur; the exponent 1/v ranges from 1
to the dimensionality of the embedding fractal. The exclud-
ed volume does affect SAW’s on some fractals and does not
affect SAW’s performed on others. We used it to calculate
1/v for SAW’s on the three-dimensional Sierpinski gasket
and found its value to be 2 just as the fractal dimensionality
of the gasket. We draw attention to the fact that the back-
bone of the infinite incipient cluster at the percolation
threshold is believed to be modeled by a finitely ramified
fractal.’ Since the geometry of the fractal determines the
value of the SAW exponent v as shown in this work, the
knowledge of v (of the SAW) in percolation might provide
valuable information about the geometrical structure of the
infinite cluster.
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