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Abstract. We study diffusion in percolation systems at criticality in the presence of a 
constant bias field E. Using the exact enumeration method we show that the mean 
displacement of a random walker varies as (r(f))-log f / A ( E )  where A ( € )  = 
I n [ ( l + E ) / ( l  - E ) ]  for small E. More generally, diffusion on a given configuration is 
characterised by the probability P ( r ,  t )  that the random walker is on site r at time t. We 
find that the corresponding configurational average shows simple scaling behaviour and 
is described by a single exponent. In contrast, our numerical results indicate that the 
averaged moments ( P q ( t ) )  = ( Z , P 4 ( r ,  t ) )  are described by an infinite hierarchy of 
exponents. For zero bias field, however, all moments are determined by a single gap 
exponent. 

In recent years the problem of diffusion in disordered structures under the influence 
of an external bias field E has received much interest [ 1-13]. While some understanding 
has been achieved in the case of a topological bias [ 11-13], the situation for the more 
conventional ‘Euclidean’ bias is rather unclear (see in particular [6, 9, lo]). 

In this letter we study in detail both types of biased diffusion on the infinite 
percolation cluster at criticality [14]. Using the exact enumeration method [15, 161 we 
present results for the mean displacements as well as for the average distribution 
functions and their fluctuations. In both cases we find that the mean displacements 
are proportional to (log t ) ”  where CY is close to unity and is independent of the field. 
The prefactor is proportional to l/{ln[( 1 + E)/(  1 - E)]} for small bias field E. More 
generally, for each random configuration the dynamics is completely characterised by 
the probability P ( r ,  t )  that a random walker is on site r at time t when starting from 
the origin at t = 0. We find that in both types of bias fields the configurational averaged 
distribution functions scale and can be described by a single exponent. In contrast, 
to characterise the (configurational averaged) moments of P( r, t )  our numerical results 
suggest an infinite hierarchy of exponents. Similar ‘multifractal’ behaviour has been 
observed recently in several physical systems [ 17-24]. For zero bias field, however, a 
single exponent is sufficient to characterise all moments. 

Consider a random walker on the incipient infinite percolation cluster under the 
influence of a bias field. The bias field is modelled by giving the random walker a 
higher probability W+ to move along the direction of the field and a lower probability 
W- to move against the field, 

w* = a(1 * E )  ( 1 )  
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where 0 s  E d 1 is the strength of the field and a is an appropriate normalisation factor. 
The field can be either uniform in the xy direction (‘Euclidean’ bias) or directed in 
topological space [ll-131 (‘topological’ bias), see figure 1. In a topological bias, every 
bond experiences a bias field which drives the walker away in chemical distance [25] 
(path length) from a point source. Consequently, the random walker has an enhanced 
probability W+ to increase the chemical distance from the source in the next step, and 
a decreased probability W- to decrease the chemical distance. 

Diffusion in the presence of a topological bias field is conveniently described 
[ 11-13] by the mean chemical distance (I(  t ) )  travelled by the walker up to time t, while 
for the Euclidean bias (r(t)) is the appropriate quantity. By definition 

and 

where I(r)  is the chemical distance [25] of site r from the origin. The mean chemical 
distance in the case of a topological bias field has been studied before [ 11-13]. It was 
found [ 121 that in percolation at criticality (in d = 2 and in the Cayley tree) 

(I(t))-ln t / A ( E )  (3a)  
where A ( E )  = In[( 1 + E ) / (  1 - E)]. To calculate ( r (  t ) )  for the Euclidean bias we have 
used the exact enumeration method which enables us to enumerate P(r,  t )  exactly for 
each configuration. Our results for several values of E are shown in figure 2. They 
suggest also 

(r( t )>-  (log t ) ” I B ( E )  (3b) 
where B ( E )  = A ( E )  for small E and the exponent a is close to 1. From our data we 
cannot exclude the case a = d, /d , -0 .88 ,  where dl =$ and d ,=$  are the topological 
and fractal dimensions, respectively. The relation CY = d , / d ,  would mean that both 
topological and Euclidean bias are in the same universality class. In both cases, the 
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t 

[ a 1  I b l  
Figure 1. Illustrations of Euclidean bias ( a )  and the topological bias ( b ) .  The arrows 
represent the directions of the bias field along the bonds. S is the source of the topological 
field. The full circles denote those sites which are favourably occupied by a random walker 
(‘hot sites’) while the open circles represent those sites which the walker favours to leave 
(‘cold sites’). 
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Figure 2. ( a )  Mean displacement (x( t ) )  against In t for several Euclidean bias fields: E = 0.2 
(0), 0.35 (O), 0.5 (A),  0.65 (U), 0.8 (A) .  The results were obtained using the exact 
enumeration method and averages were taken over more than a hundred cluster configur- 
ations each. Due to symmetry ( y (  1)) is equal to (x( t ) ) ,  which we also confirmed numerically. 
( b )  Slopes B ( E )  obtained from ( a ) .  The broken line shows A ( E ) = l n [ ( l + E ) / ( l - E ) ] .  

origin of the logarithmic slow motion lies in the fact that the walker can easily get 
stuck in dangling ends and loops ('hot' sites, see figure 1) which exist in all length 
scales at criticality. 

In order to obtain a deeper understanding of the underlying dynamics and to 
characterise the process further we have studied the set of distribution functions 
{ P ( r ,  t ) } .  First we consider the average density distribution function. It is convenient 
to study the function PT( I ,  t )  of PT( I - ( I ) ,  t )  for the topological bias and PE(lr - (r)l ,  t )  
for the Euclidean bias. Here & ( I ,  t )  is the average probability to find the random 
walker at a site in chemical distance 1 from the origin. PE(p,  t )  is the average probability 
to find the walker at distance p Ir -(r)l from the average position ( r ) .  The simplest 
scaling ansatz for PT is 

PT(I, t ,  = (l(f))-lf(l/(l(t))) (40) 

PdP, t )  = ( P ( ~ ) ) - l g ( P / ( P ( t ) ) ) .  (4b) 

and similarly 

The prefactors are due to normalisation. In figure 3 we have plotted & ( I ,  t ) ( l (  t ) )  
against I / ( I ( t ) )  and P E ( p ,  t ) ( p ( t ) )  against p / ( p ( t ) ) ,  both for the bias field E = 0.2. The 
data collapse supports the scaling ansatz of (4). This indicates that essentially one 
exponent is enough to characterise the mean density distributions. It follows from (4) 
that the corresponding moments ( l " )  and ( p " )  scale as 

( I " ) - ( / ( t ) ) "  ( 5 a )  

( P " )  - ( d t ) ) " .  (56) 

and 

Next we consider the moments 
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Figure3. ( a )  Plot of (1(r))P,.(l, r) against l / ( l ( t ) )  for 1 between 10 and 170 and for 
topological bias field E =0.2. ( b )  Plot of (p(t))P,(p, t )  against p/(p(r)) for p between 10 
and 100 and for Euclidean bias field E =0.2. In ( a )  and ( b )  r =  1000 (0), 2000 (A), and 
4000 (Cl) and averages were made over 400 configurations. 

where r defines the range Ir - il s (7)”’ for the Euclidean bias and the range within 
chemical distance f from the origin for the topological bias. The bars represent averages 
over the considered (single) configurational averaged length scale. For the topological 
bias we have L= (I( t)), while for the Euclidean bias L = (x( t))  or ( y (  t)). For E = 0 
we choose L 3 ( r2)”2. 

Equation (6) defines the set of exponents 7(q ) .  A similar ansatz has been used, 
e.g., in studies of chaotic dynamical systems [ 191, kinetic aggregation [21] or transport 
in random fields [24]. 

Defining the number of sites n ( p ) d l n p  for which l n p  is in the range (lnp, 
In p + d In p) we can rewrite (6) as 

Z ( q )  = { p q n ( p )  d In p (7)  

where now p stands for P ( r ,  t ) .  To obtain n ( p )  and Z(q) for percolation systems at 
criticality we have calculated P(r ,  t )  for each configuration by the exact enumeration 
method. This way we have determined the configurational average Z(q ,  t )  and the 
histogram n ( p ) .  In figure 4 we present the histogram n ( p )  for three cases, zero bias 
field (broken curve), Euclidean bias (E = 0.2) (full curve) and topological bias (E = 0.5) 
(chain curve). In the presence of the bias fields n ( p )  shows a broad maximum followed 
by a long tail which extends to extremely small values of P ( r ,  t )  at the coldest sites 
(within the range r) of the cluster. This form of n ( p )  resembles the shape of the 
growth site probability distribution in kinetic aggregation [21, 221 and the voltage 
distribution in random resistor networks [23]. In fact, there is a close analogy between 
these systems and the problem of biased diffusion in percolation systems. In DLA, for 
example, the growth-site probability distribution p i  is analogous to the function P( r, t )  
discussed here. In DLA the tips of the cluster can be occupied more easily and hence 
p i  of the tips is large (‘hot tips’). On the other hand, only very few particles can get 
deep inside the fjords and pi  is extremely small there. The hot tips and fjords in DLA 
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Figure4. The histogram n ( p )  of p = P(r,  t )  with arbitrary units; for zero field, t = 15 000 
(broken curve), for Euclidean bias field E = 0.2, t = 4000 (full curve) and for topological 
bias field E = 0.5, t = 4000 (chain curve). 

correspond to the hot and cold sites in the biased diffusion problem considered here. 
The voltage drops play a similar role across the bonds in random resistor networks. 

The situation is different without bias field, (figure 4, broken curve). In this case 
the histogram n ( p )  is very narrow and a characteristic long tail is completely absent. 
From kinetic aggregation, for example, we know that a broad distribution n( p) gives 
rise to multifractal characteristics of the moments Z ( q ) .  Therefore the moments cannot 
be described by a single gap exponent but require an infinite hierarchy of exponents. 
Thus our findings for n( p) may indicate that for E > 0 multifractal features characterise 
the dynamical process, while for E = 0 the moments Z ( q )  are described by a single 
exponent. To study this point further we have calculated the configurational average 
of Z ( q )  for fixed time r (in the asymptotic regime) and deduced 7 ( q )  from (6). Results 
for T (  q )  for several values of Euclidean bias fields are shown in figure 5 and compared 
with the zero field case. The figure suggests that the whole hierarchy of exponents 
changes continuously with the field strength E. In the limit E + 0 we find that T( q )  is 
linear in q and is described by?: 

4 q )  = 4 q  - 1). (8) 

In the limit E + 1 every hot site (see figure 1) represents a trap from which the walker 
cannot escape. Hence, after a few time steps we have 

P(r ,  t )  = s,,o E = l  (9) 
where ro is the coordinate of the trap closest to the origin of the walk. Substituting 
(9) into (6) yields 

q s O , E = l  
q<O,E=l .  

t The slope of 7 ( 9 )  depends on the choice of L. If we choose L = ( I )  instead then ~ ( 9 )  = d, (q  - 1 )  where 
d, is the topological dimension d,  - 3 in d = 2. 
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Figure5 The exponents ‘(4) plotted against q for E = O  ( A )  and several values of the 
Euclidian bias field E = 0.2 (0), 0.5 (O), 1.0 (discontinuity at q = 0 as expressed by equation 
(10)). The results represent averages over 200 cluster configurations and have been obtained 
for t = 4000. 

This limiting case is also shown in figure 5 .  For general E, T ( q )  is a convex function. 
For large q values, T ( q )  is linear in q, but for small q there is a downward curvature. 
We obtained qualitatively similar results for the topological bias. It should be noted 
that for zero bias field our results for T ( q )  converged very well to (8). This supports 
our conclusion that the multifractal features vanish when the bias field approaches 
zero. In contrast, for E > 0 the exponents T ( q )  changed slightly with time. For q < 0 
and q > 1, T( q )  tended to decrease with time, while in the interval 0 < q < 1 T ( q )  showed 
a tendency to increase. This tendency excludes the possibility that a simple gap 
exponent is sufficient to characterise the moments, i.e. that T ( q )  is a simple straight 
line. It also excludes the case that T ( q )  consists of two straight lines being described 
by two exponents. 

Qualitatively similar results have been obtained for the topological bias. 
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